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PROBABILITY THEORY AND STOCHASTIC PROCESS 

 

Course Objectives: 

 

 To provide mathematical background and sufficient experience so that student can read, 

write and understand sentences in the language of probability theory. 

 To introduce students to the basic methodology of “probabilistic thinking” and apply it to 

problems. 

 To understand basic concepts of Probability theory and Random Variables, how to deal 

with multiple Random Variables. 

 To understand the difference between time averages statistical averages. 

 To teach students how to apply sums and integrals to compute probabilities, and 
expectations. 

UNIT I: 

Probability and Random Variable 

Probability: Set theory, Experiments and Sample Spaces, Discrete and Continuous Sample 

Spaces, Events, Probability Definitions and Axioms, Joint Probability, Conditional Probability, 

Total Probability, Bayes’ Theorem, and Independent Events, Bernoulli’s trials. 

The Random Variable: Definition of a Random Variable, Conditions for a Function to be a 

Random Variable, Discrete and Continuous. 

 

UNIT II: 

Distribution and density functions and Operations on One Random Variable 

Distribution and density functions: Distribution and Density functions, Properties, Binomial, 

Uniform, Exponential, Gaussian, and Conditional Distribution and Conditional Density function 

and its properties, problems. 

Operation on One Random Variable: Expected value of a random variable, function of a 

random variable, moments about the origin, central moments, variance and skew, characteristic 

function, moment generating function. 

 

UNIT III: 

Multiple Random Variables and Operations on Multiple Random Variables 

Multiple Random Variables: Joint Distribution Function and Properties, Joint density Function 

and Properties, Marginal Distribution and density Functions, conditional Distribution and density 

Functions, Statistical Independence, Distribution and density functions of Sum of Two Random 

Variables. 

Operations on Multiple Random Variables: Expected Value of a Function of Random 

Variables, Joint Moments about the Origin, Joint Central Moments, Joint Characteristic 

Functions, and Jointly Gaussian Random Variables: Two Random Variables case Properties. 



 
 

UNIT IV: 

Stochastic Processes-Temporal Characteristics: The Stochastic process Concept, 

Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and 

Density Functions, Statistical Independence and concept of Stationarity: First-Order Stationary 

Processes, Second-Order and Wide-Sense Stationarity, Nth-Order and Strict-Sense Stationarity, 

Time Averages and Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes 

Autocorrelation Function and Its Properties, Cross-Correlation Function and Its Properties, 

Covariance Functions and its properties. 

Linear system Response: Mean and Mean-squared value, Autocorrelation, Cross-Correlation 

Functions. 

 

UNIT V: 

Stochastic Processes-Spectral Characteristics: The Power Spectrum and its Properties, 

Relationship between Power Spectrum and Autocorrelation Function, the Cross-Power Density 

Spectrum and Properties, Relationship between Cross-Power Spectrum and Cross-Correlation 

Function. 

Spectral characteristics of system response: power density spectrum of response, cross power 

spectral density of input and output of a linear system 

 

TEXT BOOKS: 

 

1. Probability, Random Variables & Random Signal Principles -Peyton Z. Peebles, TMH, 

4th Edition, 2001. 

2. Probability and Random Processes-Scott Miller, Donald Childers,2Ed,Elsevier,2012 

 

REFERENCE BOOKS: 

 

1. Theory of probability and Stochastic Processes-Pradip Kumar Gosh, University Press 

2. Probability and Random Processes with Application to Signal Processing - Henry Stark 

and John W. Woods, Pearson Education, 3rd Edition. 

3. Probability Methods of Signal and System Analysis- George R. Cooper, Clave D. MC 

Gillem, Oxford, 3rd Edition, 1999. 

4. Statistical Theory of Communication -S.P. Eugene Xavier, New Age Publications 2003 

5. Probability, Random Variables and Stochastic Processes Athanasios Papoulis and 

S.Unnikrishna Pillai, PHI, 4th Edition, 2002. 



 
 

 

 
Probability: 

 

 Set theory 

 Experiments 

UNIT I 

Probability and Random Variable 

 Sample Spaces, Discrete and Continuous Sample Spaces 

 Events 

 Probability Definitions and Axioms 

 Joint Probability 

 Conditional Probability 

 Total Probability 

 Bayes’ Theorem 

 Independent Events 

 Bernoulli’s trials 

 
Random Variable: 

 

 Definition of a Random Variable 

 Conditions for a Function to be a Random Variable 

 Discrete and Continuous Random Variables 
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UNIT – 1 

PROBABILITY AND RANDOM VARIABLE 
 

PROBABILITY 

 
 

Introduction 

 
It is remarkable that a science which began with the consideration of games of chance 

should have become the most important object of human knowledge. Probability is simply how 
likely something is to happen. Whenever we’re unsure about the outcome of an event, we can 
talk about the probabilities of certain outcomes —how likely they are. The analysis of events 

governed by probability is called statistics. Probability theory, a branch 
of mathematics concerned with the analysis of random phenomena. The outcome of a random 
event cannot be determined before it occurs, but it may be any one of several possible 

outcomes. The actual outcome is considered to be determined by chance. 
 

How to Interpret Probability 

 
Mathematically, the probability that an event will occur is expressed as a number between 0 and 1. 

Notationally, the probability of event A is represented by P (A). 

 
 If P (A) equals zero, event A will almost definitely not occur. 

 If P (A) is close to zero, there is only a small chance that event A will occur. 

 If P (A) equals 0.5, there is a 50-50 chance that event A will occur. 

 If P(A) is close to one, there is a strong chance that event A will occur. 

 If P(A) equals one, event A will almost definitely occur. 

 
In a statistical experiment, the sum of probabilities for all possible outcomes is equal to one. This 

means, for example, that if an experiment can have three possible outcomes (A, B, and C), then  

P(A) + P(B) + P(C) = 1. 
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Applications  

 

Probability theory is applied in everyday life in risk assessment and in trade on financial markets. 

Governments apply probabilistic methods in environmental regulation, where it is called pathway 

analysis 

 

Another significant application of probability theory in everyday life is reliability. Many consumer 

products, such as automobiles and consumer electronics, use reliability theory in product design to 

reduce the probability of failure. Failure probability may influence a manufacturer's decisions on a 

product's warranty. 

 

The range of applications extends beyond games into business decisions, insurance, law, medical tests,  

and the social sciences The telephone network, call centers, and airline companies with their randomly  

fluctuating loads could not have been economically designed without probability theory. 
 

 

Uses of Probability in real life 

 

 Sports – be it basketball or football or cricket a coin is tossed and both teams have 50/50 chances  

of winning it. 

 

 Board Games – The odds of rolling one die and getting and even number there is a 50% chance  

since three of the six numbers on a die are even. 

 

 Medical Decisions – When a patient is advised to undergo surgery, they often want to know the  

success rate of the operation which is nothing but a probability rate. Based on the same the patient  

takes a decision whether or not to go ahead with the same. 

 

 Life Expectancy – this is based on the number of years the same groups of people have lived in the past. 

 

 Weather – when planning an outdoor activity, people generally check the probability of rain. 

Meteorologists also predict the weather based on the patterns of the previous year, temperatures and 

natural disasters are also predicted on probability and nothing is ever stated as a surety but a possibility 

and an approximation. 
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SET THEORY: 

 

Set: A set is a well defined collection of objects. These objects are called elements or members of the 

set. Usually uppercase letters are used to denote sets. 
 

The set theory was developed by George Cantor in 1845-1918. Today, it is used in almost every 

branch of mathematics and serves as a fundamental part of present-day mathematics. 

In everyday life, we often talk of the collection of objects such as a bunch of keys, flock of birds, 

pack of cards, etc. In mathematics, we come across collections like natural numbers, whole numbers, 

prime and composite numbers. 

 

We assume that, 

 

● the word set is synonymous with the word collection, aggregate, class and comprises of elements. 

 

● Objects, elements and members of a set are synonymous terms. 

 

● Sets are usually denoted by capital letters A, B, C, ...... , etc. 

 

● Elements of the set are represented by small letters a, b, c, ..... , etc. 

 

If ‘a’ is an element of set A, then we say that ‘a’ belongs to A and it is mathematically 

represented as aϵ A 

If ‘b‘ is an element which does not belong to A, we represent this as b ∉ A. 

 
Examples of sets: 

 

1. Describe the set of vowels. 

 

If A is the set of vowels, then A could be described as A = {a, e, i, o, u}. 
 

2. Describe the set of positive integers. 

 

Since it would be impossible to list all of the positive integers, we need to use a rule to describe this 

set. We might say A consists of all integers greater than zero. 

3. Set A = {1, 2, 3} and Set B = {3, 2, 1}. Is Set A equal to Set B? 

 

Yes. Two sets are equal if they have the same elements. The order in which the elements are listed 

does not matter. 

4. What is the set of men with four arms? 

 

Since all men have two arms at most, the set of men with four arms contains no elements. It is the 

null set (or empty set). 
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5. Set A = {1, 2, 3} and Set B = {1, 2, 4, 5, 6}. Is Set A a subset of Set B? 

 

Set A would be a subset of Set B if every element from Set A were also in Set B. However, this is 

not the case. The number 3 is in Set A, but not in Set B. Therefore, Set A is not a subset of Set B 

 

Some important sets used in mathematics are 

 
N: the set of all natural numbers = {1, 2, 3, 4, ...... } 

 

Z: the set of all integers = {....., -3, -2, -1, 0, 1, 2, 3, ..... } 

 

Q: the set of all rational numbers 

 

R: the set of all real numbers 

 

Z+: the set of all positive integers 

 

W: the set of all whole numbers 

 

Types of sets: 
 

1. Empty Set or Null Set: 

 

A set which does not contain any element is called an empty set, or the null set or the void set and it 

is denoted by ∅ and is read as phi. In roster form, ∅ is denoted by {}. An empty set is a finite set, 

since the number of elements in an empty set is finite, i.e., 0. 

 
For example: (a) the set of whole numbers less than 0. 

 

(b) Clearly there is no whole number less than 0. 

 

Therefore, it is an empty set. 
 

(c) N = {x : x ∈ N, 3 < x < 4} 

 

• Let A = {x : 2 < x < 3, x is a natural number} 

 

Here A is an empty set because there is no natural number between 

2 and 3
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2. Singleton Set: 

 

A set which contains only one element is called a singleton set. 

 
For example: 

 

• A = {x : x is neither prime nor composite} 

 

It is a singleton set containing one element, i.e., 1. 

 

• B = {x : x is a whole number, x < 1} 

 

This set contains only one element 0 and is a singleton set. 

 
• Let A = {x : x ∈ N and x² = 4} 

 

Here A is a singleton set because there is only one element 2 whose square is 4. 

 

• Let B = {x : x is a even prime number} 

 

Here B is a singleton set because there is only one prime number which is even, i.e., 2. 
 

3. Finite Set: 

 

A set which contains a definite number of elements is called a finite set. Empty set is also called a 

finite set. 

 

For example: 

 

• The set of all colors in the rainbow. 

 
• N = {x : x ∈ N, x < 7} 

 

• P = {2, 3, 5, 7, 11, 13, 17, ....... 97} 
 

4. Infinite Set: 

 

The set whose elements cannot be listed, i.e., set containing never-ending elements is called an 

infinite set. 

 

For example: 

 

• Set of all points in a plane 

 
• A = {x : x ∈ N, x > 1} 

 

• Set of all prime numbers 

 
• B = {x : x ∈ W, x = 2n} 
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5. Cardinal Number of a Set: 

 

The number of distinct elements in a given set A is called the cardinal number of A. It is denoted 

by n(A). And read as ‘the number of elements of the set‘. 

 

For example: 
 

• A {x : x ∈ N, x < 5} 

 

A = {1, 2, 3, 4} 

 

Therefore, n(A) = 4 

 

• B = set of letters in the word ALGEBRA 

B = {A, L, G, E, B, R} 

Therefore, n(B) = 6 
 

6. Equivalent Sets: 

 

Two sets A and B are said to be equivalent if their cardinal number is same, i.e., n(A) = n(B). The 

symbol for denoting an equivalent set is ‘↔‘. 

 

For example: 

 

A = {1, 2, 3} Here n(A) = 3 

 

B = {p, q, r} Here n(B) = 3 

Therefore, A ↔ B 

7. Equal sets: 

 

Two sets A and B are said to be equal if they contain the same elements. Every element of A is an 

element of B and every element of B is an element of A. 

 
For example: 

 

A = {p, q, r, s} 

 

B = {p, s, r, q} 

Therefore, A = B 

7



 

 
 

 

 

 

 

8. Disjoint Sets: 

 

Two sets A and B are said to be disjoint, if they do not have any element in common. 

 
For example; 

 

 

A = {x : x is a prime number} 

 

B = {x : x is a composite number}. 

 

Clearly, A and B do not have any element in common and are disjoint sets. 

 
9. Overlapping sets: 

 

Two sets A and B are said to be overlapping if they contain at least one element in common. 

 
For example; 

 

• A = {a, b, c, d} 

 

B = {a, e, i, o, u} 

 

• X = {x : x ∈  N, x < 4} 

Y = {x : x ∈ I, -1 < x < 4} 

Here, the two sets contain three elements in common, i.e., (1, 2, 3) 
 
 

10. Definition of Subset: 

 
If A and B are two sets, and every element of set A is also an element of set B, then A is called a 

subset of B and we write it as A ⊆ B or B ⊇ A 

 

The symbol ⊂ stands for ‘is a subset of‘ or ‘is contained in‘ 

 

• Every set is a subset of itself, i.e., A ⊂ A, B ⊂ B. 

 

• Empty set is a subset of every set. 

 
• Symbol ‘⊆‘ is used to denote ‘is a subset of‘ or ‘is contained in‘. 

 

• A ⊆ B means A is a subset of B or A is contained in B. 

 

• B ⊆ A means B contains A. 

8



 

 
 

 

 

 

 
Examples; 

 

1. Let A = {2, 4, 6} 

 

B = {6, 4, 8, 2} 
 

Here A is a subset of B 

 

Since, all the elements of set A are contained in set B. 

But B is not the subset of A 

Since, all the elements of set B are not contained in set A. 
 

2. The set N of natural numbers is a subset of the set Z of integers and we write N ⊂ Z. 
 

3. Let A = {2, 4, 6} 

 

B = {x : x is an even natural number less than 8} 

Here A ⊂ B and B ⊂ A. 

Hence, we can say A = B 

 
 

4. Let A = {1, 2, 3, 4} 

 

B = {4, 5, 6, 7} 

 

Here A ⊄ B and also B ⊄ A 

[⊄ denotes ‘not a subset of‘] 
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11. Proper Subset: 

 

If A and B are two sets, then A is called the proper subset of B if A ⊆ B but   A ≠ B. The symbol 

‘⊂‘ is used to denote proper subset. Symbolically, we write A ⊂ B. 

 
For example; 

 

1. A = {1, 2, 3, 4} 

 

Here n(A) = 4 

 

B = {1, 2, 3, 4, 5} 

 

Here n(B) = 5 

We observe that, all the elements of A are present in B but the element ‗5‘ of B is not present in A. 

So, we say that A is a proper subset of B. 

Symbolically, we write it as A ⊂ B 

 
Notes: 

 

No set is a proper subset of itself. 

 
Null set or ∅ is a proper subset of every set. 

 
 

2. A = {p, q, r} 

 

B = {p, q, r, s, t} 

 

Here A is a proper subset of B as all the elements of set A are in set B and also A ≠ B. 

 
Notes: 

 

No set is a proper subset of itself. 

 

Empty set is a proper subset of every set. 
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12. Universal Set 

 

A set which contains all the elements of other given sets is called a universal set. The symbol for 

denoting a universal set is ∪ or ξ. 

 

For example; 

 

1. If A = {1, 2, 3} B = {2, 3, 4} C = {3, 5, 7} 

 

then U = {1, 2, 3, 4, 5, 7} 

 

[Here A ⊆ U, B ⊆ U, C ⊆ U and U ⊇ A, U ⊇ B, U ⊇ C] 

 

2. If P is a set of all whole numbers and Q is a set of all negative numbers then the universal set is a 

set of all integers. 

 

3. If A = {a, b, c} B = {d, e} C = {f, g, h, i} 

 

then U = {a, b, c, d, e, f, g, h, i} can be taken as universal set. 

 

Operations on sets: 
 

1. Definition of Union of Sets: 

 

Union of two given sets is the set which contains all the elements of both the sets. 

 

To find the union of two given sets A and B is a set which consists of all the elements of A and all 

the elements of B such that no element is repeated. 

 
 

The symbol for denoting union of sets is ‘∪‘. 

Some properties of the operation of union: 

(i) A∪B = B∪A (Commutative law) 

 
(ii) A∪(B∪C) = (A∪B)∪C (Associative law) 

 

(iii) A ∪ Ф = A (Law of identity element, is the identity of ∪) 

 

(iv) A∪A = A (Idempotent law) 

 

(v) U∪A = U (Law of ∪) ∪ is the universal set. 
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Note: 

 

A ∪ Ф = Ф∪ A = A i.e. union of any set with the empty set is always the set itself. 

Examples: 

1. If A = {1, 3, 7, 5} and B = {3, 7, 8, 9}. Find union of two set A and B. 

 
Solution: 

 

A ∪ B = {1, 3, 5, 7, 8, 9} 

No element is repeated in the union of two sets. The common elements 3, 7 are taken only once. 

 
2. Let X = {a, e, i, o, u} and Y = {ф}. Find union of two given sets X and Y. 

 
Solution: 

 

X ∪ Y = {a, e, i, o, u} 

 

Therefore, union of any set with an empty set is the set itself. 

 
2. Definition of Intersection of Sets: 

 

Intersection of two given sets is the  set which contains all the elements that are common to both 

the sets. 

 

To find the intersection of two given sets A and B is a set which consists of all the elements which 

are common to both A and B. 

 

The symbol for denoting intersection of sets is ‘∩’ 

Some properties of the operation of intersection 

 

(i) A∩B = B∩A (Commutative law) 

 

(ii) (A∩B)∩C = A∩ (B∩C) (Associative law) 

 

(iii) Ф ∩ A = Ф (Law of Ф) 

 
(iv) U∩A = A (Law of ∪) 

 

(v) A∩A = A (Idempotent law) 

 

A∩(B∪C) = (A∩B) ∪ (A∩C) (Distributive law)  

A∪(B∩C) = (AUB) ∩ (AUC) (Distributive law) 
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          Note: 

A ∩ Ф = Ф ∩ A = Ф i.e. intersection of any set with the empty set is always the empty set. 

Solved examples : 

1. If A = {2, 4, 6, 8, 10} and B = {1, 3, 8, 4, 6}. Find intersection of two set A and B. 

 
Solution: 

 

A ∩ B = {4, 6, 8} 

 
Therefore, 4, 6 and 8 are the common elements in both the sets. 

 
2. If X = {a, b, c} and Y = {ф}. Find intersection of two given sets X and Y. 

 
Solution: 

 

X ∩ Y = { } 

 
3. Difference of two sets 

 

If A and B are two sets, then their difference is given by A - B or B - A. 

 

• If A = {2, 3, 4} and B = {4, 5, 6} 

 

A - B means elements of A which are not the elements of B. 

i.e., in the above example A - B = {2, 3} 

• If A and B are disjoint sets, then A – B = A and B – A = B 

Solved examples to find the difference of two sets: 

 

1. A = {1, 2, 3} and B = {4, 5, 6}. 

 
Find the difference between the two sets: 

 
(i) A and B 

 

(ii) B and A 

 
Solution: 

 

The two sets are disjoint as they do not have any elements in common. 

(i) A - B = {1, 2, 3} = A 

(ii) B - A = {4, 5, 6} = B 
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2. Let A = {a, b, c, d, e, f} and B = {b, d, f, g}. 

 
Find the difference between the two sets: 

 
(i) A and B 

 

(ii) B and A 

 
Solution: 

 

(i) A - B = {a, c, e} 

 

Therefore, the elements a, c, e belong to A but not to B 

 

(ii) B - A = {g) 

 
Therefore, the element g belongs to B but not A. 

 
4. Complement of a Set 

 

In complement of a set if S be the universal set and A a subset of S then the complement of A is 

the set of all elements of S which are not the elements of A. 

 

Symbolically, we denote the complement of A with respect to S as Ac or 𝐴̅  or A' 

 

Some properties of complement sets 

 
(i) A ∪ A' = A' ∪ A = ∪ (Complement law) 

 

(ii) (A ∩ B') = ϕ (Complement law) - The set and its complement are disjoint sets. 

 
(iii) (A ∪ B) = A' ∩ B' (De Morgan‘s law) 

 

(iv) (A ∩ B)' = A' ∪ B' (De Morgan‘s law) 

 

(v) (A')' = A (Law of complementation) 

 

(vi) Ф' = ∪ (Law of empty set - The complement of an empty set is a universal set. 

 

(vii) ∪' = Ф and universal set) - The complement of a universal set is an empty set. 
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For Example; If S = {1, 2, 3, 4, 5, 6, 7} 

 

A = {1, 3, 7} find A'. 

 
Solution: 

 

We observe that 2, 4, 5, 6 are the only elements of S which do not belong to A. 

Therefore, A' = {2, 4, 5, 6} 

Algebraic laws on sets: 
 

1. Commutative Laws: 

 

For any two finite sets A and B; 

 
(i) A U B = B U A 

 
(ii) A ∩ B = B ∩ A 

 
2. Associative Laws: 

 

For any three finite sets A, B and C; 

 
(i) (A U B) U C = A U (B U C) 

 

(ii) (A ∩ B) ∩ C = A ∩ (B ∩ C) 

 
Thus, union and intersection are associative. 

 

3. Idempotent Laws: 

 

For any finite set A; 

 

(i) A U A = A 

 
(ii) A ∩ A = A 

 
4. Distributive Laws: 

 

For any three finite sets A, B and C; 

 
(i) A U (B ∩ C) = (A U B) ∩ (A U C) 

 
(ii) A ∩ (B U C) = (A ∩ B) U (A ∩ C) 

 
Thus, union and intersection are distributive over intersection and union respectively
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5. De Morgan’s Laws: 

 

For any two finite sets A and B; 

 

(i) A – (B U C) = (A – B) ∩ (A – C) 

 
(ii) A - (B ∩ C) = (A – B) U (A – C) 

 
De Morgan‘s Laws can also we written as: 

 

(i) (A U B)‘ = A' ∩ B' 

 
(ii) (A ∩ B)‘ = A' U B' 

 
More laws of algebra of sets: 

 

6. For any two finite sets A and B; 

 
(i) A – B = A ∩ B' 

 
(ii) B – A = B ∩ A' 

 
(iii) A – B = A ⇔ A ∩ B = ∅ 

 
(iv) (A – B) U B = A U B 

 
(v) (A – B) ∩ B = ∅ 

(vi) (A – B) U (B – A) = (A U B) – (A ∩ B) 

 
Definition of De Morgan’s law: 

 

The complement of the union of two sets is equal to the intersection of their complements and the 

complement of the intersection of two sets is equal to the union of their complements. These are 

called De Morgan’s laws. 

 

For any two finite sets A and B; 

 
(i) (A U B)' = A' ∩ B' (which is a De Morgan's law of union). 

 

(ii) (A ∩ B)' = A' U B' (which is a De Morgan's law of intersection). 
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Venn Diagrams: 

 

Pictorial representations of sets represented by closed figures are called set diagrams or Venn 

diagrams. 

 

Venn diagrams are used to illustrate various operations like union, intersection and difference. 

We can express the relationship among sets through this in a more significant way. 

In this, 

 

• A rectangle is used to represent a universal set. 

 

• Circles or ovals are used to represent other subsets of the universal set. 

 

Venn diagrams in different situations 

 
In these diagrams, the universal set is represented by a rectangular region and its subsets by circles 

inside the rectangle. We represented disjoint set by disjoint circles and intersecting sets by 

intersecting circles. 

 

S.No Set &Its relation Venn Diagram 

 
 

1 

 
 

Intersection of A and B 
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2 

 
 

Union of A and B 

 

 
 

3 

 
 

Difference : A-B 

 

 

 

 

4 

 

 

 

Difference : B-A 

 

 

 

 

 

 

5 

 

 

 

Complement of set A 

 

 
 

6 

 
 

A ∪ B when A ⊂ B 

 

18



 

 
 

 

 
 

 

 

 
 

7 

 
 

A ∪ B when neither A ⊂ B 

nor B ⊂ A 

 

 
 

8 

 
 

A ∪ B when A and B are 

disjoint sets 

 

 
 

9 

 
 

(A ∪ B)’ (A union B dash) 

 

 
 

10 

 
 

(A ∩ B)’ (A intersection B 

dash) 

 

 
 

11 

 
 

B’ (B dash) 

 

 
 

12 

 
 

(A - B)’ (Dash of sets A 

minus B) 
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13 

 
 

(A ⊂ B)’ (Dash of A subset 

B) 

 

 

 

 

Problems of set theory: 
 

1. Let A and B be two finite sets such that n(A) = 20, n(B) = 28 and n(A ∪ B) = 36, find n(A ∩ B). 
 

Solution: 

 

Using the formula n(A ∪ B) = n(A) + n(B) - n(A ∩ B). 

then n(A ∩ B) = n(A) + n(B) - n(A ∪ B) 

= 20 + 28 - 36 

 

= 48 - 36 

 

= 12 

 
 

2. If n(A - B) = 18, n(A ∪ B) = 70 and n(A ∩ B) = 25, then find n(B). 

 
Solution: 

 

Using the formula n(A∪B) = n(A - B) + n(A ∩ B) + n(B - A) 

70 = 18 + 25 + n(B - A) 

70 = 43 + n(B - A) 

n(B - A) = 70 - 43 

n(B - A) = 27 

 

Now n(B) = n(A ∩ B) + n(B - A) 

 

= 25 + 27 

 

= 52 
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3. In a group of 60 people, 27 like cold drinks and 42 like hot drinks and each person likes at least 

one of the two drinks. How many like both coffee and tea? 

 

Solution: 

 

Let A = Set of people who like cold drinks. 

B = Set of people who like hot drinks. 

Given 

 

(A ∪ B) = 60 n(A) = 27 n(B) = 42 then; 

n(A ∩ B) = n(A) + n(B) - n(A ∪ B) 

= 27 + 42 - 60 
 

= 69 - 60 = 9 

 

= 9 

 

Therefore, 9 people like both tea and coffee. 

 
 

4. There are 35 students in art class and 57 students in dance class. Find the number of students 

who are either in art class or in dance class. 

 

• When two classes meet at different hours and 12 students are enrolled in both activities. 

 

• When two classes meet at the same hour. 

 
Solution: 

 

n(A) = 35, n(B) = 57, n(A ∩ B) = 12 

 

(Let A be the set of students in art class. 

B be the set of students in dance class.) 

 

(i) When 2 classes meet at different hours n(A ∪ B) = n(A) + n(B) - n(A ∩ B) 

 

= 35 + 57 - 12 

 

= 92 - 12 

 

= 80 
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(ii) When two classes meet at the same hour, A∩B = ∅ n (A ∪ B) = n(A) + n(B) - n(A ∩ B) 

 

= n(A) + n(B) 

 

= 35 + 57 

 

= 92 

 

 

5. In a group of 100 persons, 72 people can speak English and 43 can speak French. How many can 

speak English only? How many can speak French only and how many can speak both English and 

French? 

 
Solution: 

 

Let A be the set of people who speak English. 

B be the set of people who speak French. 

A - B be the set of people who speak English and not French.   

B - A be the set of people who speak French and not English.   

A ∩ B be the set of people who speak both French and English. 

Given, 

n(A) = 72 n(B) = 43 n(A ∪ B) = 100 

Now, n(A ∩ B) = n(A) + n(B) - n(A ∪ B) 

= 72 + 43 - 100 

 

= 115 - 100 

 

= 15 

 

Therefore, Number of persons who speak both French and English = 15 

n(A) = n(A - B) + n(A ∩ B) 

⇒ n(A - B) = n(A) - n(A ∩ B) 

 

= 72 - 15 
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= 57 

 

and n(B - A) = n(B) - n(A ∩ B) 

 

= 43 - 15 

 

= 28 

 

Therefore, Number of people speaking English only = 57 

Number of people speaking French only = 28 

 

Probability Concepts 
 

Before we give a definition of probability, let us examine the following concepts: 

 

1. Experiment: 

 

In probability theory, an experiment or trial (see below) is any procedure that can be 

infinitely repeated and has a well-defined set of possible outcomes, known as the sample 

space. An experiment is said to  be random if  it  has  more  than  one  possible  outcome,  

and deterministic if it has only one. A random experiment that has exactly two (mutually 

exclusive) possible outcomes is known as a Bernoulli trial. 

 

Random Experiment: 

 

An experiment is a random experiment if its outcome cannot be predicted precisely. One 

out of a number of outcomes is possible in a random experiment. A single performance of 

the random experiment is called a trial. 

 

Random experiments are often conducted repeatedly, so that the collective results may be 

subjected to statistical analysis. A fixed number of repetitions of the same experiment  can  

be thought of as a composed experiment, in which case the  individual  repetitions  are 

called trials. For example, if one were to toss the same coin one hundred times and record 

each result, each toss would be considered a trial within the experiment composed of all 

hundred tosses. 

 
Mathematical description of an experiment: 

A random experiment is described or modeled by a mathematical construct known as a probability 

space. A probability space is constructed and defined with a specific kind of experiment or trial in 

mind. 
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A mathematical description of an experiment consists of three parts: 
 

1. A sample space, Ω (or S), which is the set of all possible outcomes. 

2. A set of events , where each event is a set containing zero or more outcomes. 

3. The assignment of probabilities to the events—that is, a function P mapping from events to 

probabilities. 

An outcome is the result of a single execution of the model. Since individual outcomes might be of 

little practical use, more complicated events are used to characterize groups of outcomes. The 

collection of all such events is a sigma-algebra . Finally, there is a need to specify each event's 

likelihood of happening; this is done using the probability measure function,P. 

 

2. Sample Space:  The sample  space   is the collection of all possible outcomes of a 

random experiment. The elements of are called sample points. 

 A sample space may be finite, countably infinite or uncountable. 

 A finite or countably infinite sample space is called a discrete sample space. 
 

 An uncountable sample space is called a continuous sample space 

 

Ex:1. For the coin-toss experiment would be the results ―Head‖and ―Tail‖, which we may 

represent by S={H T}. 

 

Ex. 2. If we toss a die, one sample space or the set of all possible outcomes is 

S = { 1, 2, 3, 4, 5, 6} 

The other sample space can be 

S = {odd, even} 

Types of Sample Space: 

 

1. Finite/Discrete Sample Space: 

 

Consider the experiment of tossing a coin twice. 

The sample space can be 

S = {HH, HT, T H , TT} the above sample space has a finite number of sample points. It is 

called a finite sample space
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2. Countably Infinite Sample Space: 

 

Consider that a light bulb is manufactured. It is then tested for its life length by inserting it 

into a socket and the time elapsed (in hours) until it burns out is recorded. Let the measuring 

instrument is capable of recording time to two decimal places, for example 8.32 hours. 

 

Now, the sample space becomes count ably infinite i.e. 

 

S = {0.0, 0.01, 0.02} 

 
The above sample space is called a countable infinite sample space. 

 
3. Un Countable/ Infinite Sample Space: 

 

If the sample space consists of unaccountably infinite number of elements then it is called 

Un Countable/ Infinite Sample Space. 

 

3. Event: An event is simply a set of possible outcomes. To be more specific, an event is a 

subset A of the sample space S. 

  

 For a discrete sample space, all subsets are events. 

 

Ex: For instance, in the coin-toss experiment the events A={Heads} and B={Tails} would be 

mutually exclusive. 

 

An event consisting of a single point of the sample space 'S' is called a simple event or elementary 

event. 

 

Some examples of event sets: 

 

Example 1: tossing a fair coin 
 

The possible outcomes are H (head) and T (tail). The associated sample space is It is 

a finite sample space. The events associated with the sample space are: and . 

 
Example 2: Throwing a fair die: 

The possible 6 outcomes are: 

. . . 

The associated finite sample space is .Some events are 
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And so on. 

 
Example 3: Tossing a fair coin until a head is obtained 

 
We may have to toss the coin any number of times before a head is obtained. Thus the possible 
outcomes are: 

H, TH, TTH, TTTH, 

How many outcomes are there? The outcomes are countable but infinite in number. The 

countably infinite sample space is  . 

 
Example 4 : Picking a real number at random between -1 and +1 

 

The associated Sample space is 
 

Clearly is a continuous sample space. 

 
Example 5: Drawing cards 

 

Drawing 4 cards from a deck: Events include all spades, sum of the 4 cards is (assuming face cards 

have a value of zero), a sequence of integers, a hand with a 2, 3, 4 and 5. There are many more 

events. 

 

Types of Events: 

 
1. Exhaustive Events: 

 

A set of events is said to be exhaustive, if it includes all the possible events. 

 

Ex. In tossing a coin, the outcome can be either Head or Tail and there is no other possible 

outcome. So, the set of events { H , T } is exhaustive. 

 
2. Mutually Exclusive Events: 

 

Two events, A and B are said to be mutually exclusive if they cannot occur together. 

 

i.e. if the occurrence of one of the events precludes the occurrence of all others, then such a set of 

events is said to be mutually exclusive. 

 

If two events are mutually exclusive then the probability of either occurring is 
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f(A)=nA/n 

 
 

 

 

 
 

Ex. In tossing a die, both head and tail cannot happen at the same time. 

 
3. Equally Likely Events: 

If one of the events cannot be expected to happen in preference to another, then such events 

are said to be Equally Likely Events.( Or) Each outcome of the random experiment has an 

equal chance of occuring. 

Ex. In tossing a coin, the coming of the head or the tail is equally likely. 

 
4. Independent Events: 

 

Two events are said to be independent, if happening or failure of one does not affect the happening 

or failure of the other. Otherwise, the events are said to be dependent. 

 

If two events, A and B are independent then the joint probability is 

 

 
5. Non-. Mutually Exclusive Events: 

 

If the events are not mutually exclusive then 

 

 
Probability Definitions and Axioms: 

1. Relative frequency Definition: 

 
Consider that an experiment E is repeated n times, and let A and B be two events associated 

w i t h E. Let nA and nB be the number of times that the event A and the event B occurred 

among the n repetitions respectively. 

 

The relative frequency of the event A in the 'n' repetitions of E is defined as 

f( A) = nA /n 

The Relative frequency has the following properties: 

1.0 ≤f(A) ≤ 1 

2. f(A) =1 if and only if A occurs every time among the n repetitions. 
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If an experiment is repeated  times under similar conditions and the event occurs in 

times, then the probability of the event A is defined as 
 

Limitation: 

Since we can never repeat an experiment or process indefinitely, we can never know the probability 

of any event from the relative frequency definition. In many cases we can't even obtain a long    

series of repetitions due to  time, cost,  or other limitations. For example, the probability of rain  

today can't really be obtained by the relative frequency definition since today can‘t be  repeated 

again. 

2. .The classical definition: 

Let the sample space (denoted by ) be the set of all possible distinct outcomes to an 

experiment. The probability of some event is 
 

provided all points in are equally likely. For example, when a die is rolled the probability of 

getting a 2 is because one of the six faces is a 2. 

Limitation: 

 

What does "equally likely" mean? This appears to use the concept of probability while trying to 

define it! We could remove the phrase "provided all outcomes are equally likely", but then the 

definition  would  clearly  be  unusable  in  many settings  where  the outcomes in did not tend to 

occur equally often. 

 
 

Example1:A fair die is rolled once. What is the probability of getting a ‘6‘ ? 
 

Here and  
 

Example2:A fair coin is tossed twice. What is the probability of getting two ‗heads'? 
 

Here  and  . 

Total number of outcomes is 4 and all four outcomes are equally likely. 

Only outcome favourable to is {HH} 
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Probability axioms: 
 

Given an event in a sample space   which is either finite with elements or countably infinite 

with elements, then we can write 
 

 

and a quantity , called the probability of event , is defined such that 

 

Axiom1: The probability of any event A is positive or zero. Namely P(A)≥0. The probability 

measures, in a certain way, the difficulty of event A happening: the smaller the probability, the    

more difficult it is to happen. i.e 

 

.  
 

Axiom2: The probability of the sure event is 1. Namely P(Ω)=1. And so, the probability is always 

greater than 0 and smaller than 1: probability zero means that there is no possibility for it to happen 

(it is an impossible event), and probability 1 means that it will always happen (it is a sure event).i.e 
 

. 
 

Axiom3: The probability of the union of any set  of two by two incompatible events is the sum of  

the probabilities of the events. That is, if we have, for example, events A,B,C, and these are two by 

two incompatible, then P(A∪B∪C)=P(A)+P(B)+P(C). i.e Additivity: 

 

, where and are mutually exclusive. 
 

 for ,  2,  ..., where , , ... are mutually exclusive 

(i.e., ). 
 

Main properties of probability: If A is any event of sample space S then 

 

1. P(A)+P(𝐴̅ )=1 

2. Since  A ∪ S , P(A ∪ )=1 

3. The probability of the impossible event is 0, i.e P(Ø)=0 

4. If A⊂B, then P(A)≤P(B). 

5. If A and B are two incompatible events, and therefore, P(A−B)=P(A)−P(A∩B).and 

P(B−A)=P(B)−P(A∩B). 

6. Addition Law of probability: 

                P(AUB)=P(A)+P(B)-P(A∩B) 
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PERMUTATIONS and COMBINATIONS: 

 
 

S.No. PERMUTATIONS COMBINATIONS: 

1 Arrangement of things in a specified 

order is called permutation. Here all 

things are taken at a time 

In permutations, the order of arrangement of 

objects is important. But, in combinations, 

order is not important, but only selection of 

objects. 

2 Arrangement of ‘r‘ things taken at a 

time from ‘n‘ things ,where r < n in a 

specified order in called r-permutation. 

 

3 Consider the letters a,b and c . 

Considering all the three letters at a 

time, the possible permutations  are 

ABC ,a c b , b c a , b a c , c b a and c a b 

. 

 

4 The number of permutations taking r 

things at a time from ‘n‘ available 

things is denoted as p ( n , r ) or n pr 

The number of combinations taking r things at 

a time from ‘n‘ available things is denoted as 

C( n , r ) or n Cr 

 
 
5 

 
 
nPr= r!/nCr= n!/(n-r)! 

 
 
n C r = P ( n , r ) / r ! = n ! / r ! ( n - r ) ! 
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Joint Probability:  

Joint probability is the likelihood of more than one event occurring at the same time. 

If a sample space consists of two events A and B which are not mutually exclusive, and 

 then the probability of these events occurring jointly or simultaneously is called the Joint Probability.  

In other words the joint probability of events A and B is equal to the relative frequency of the joint 

 occurrence.  

For 2 events A and it is denoted by P(A∩B) and joint probability in terms of conditional probability is  

 

 

 

If A and B are independent events then 
            

                                P(A∩B)=P(A)P(B) 

 
If A and B are mutually exclusive events then 

 

                                  P(A∩B)=0 

 

From addition law joint probability of two events can be represented as 

 
                           

             P(A∩B)= P(A)+P(B)-P(AUB) 
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Conditional probability 
 

The  answer  is  the  conditional  probability  of  B  given  A  denoted  by  . We shall 

develop the concept of the conditional probability and explain under what condition this 

conditional probability is same as . 

Let us consider the case of equiprobable events discussed earlier. Let  sample points be 

favourable for the joint event A∩B 

 
 

 

 
 

This concept suggests us to define conditional probability. The probability of an event B under the 
condition that another event A has occurred is called the conditional probability of B given A and 
defined by 

 

 

 

We can similarly define the conditional probability of A given B , denoted by  . From the definition of 

conditional probability, we have the joint probability  of two events A and B as follows 
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Example 1 Consider the example tossing the fair die. Suppose 
 

 
Example 2 A family has two children. It is known that at least one of the children is a girl. What is 
the 

probability that both the children are girls? 

 

A = event of at least one girl 

 

B = event of two girl 
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Properties of Conditional probability: 

 

1. If , then  

We have,  

 

 

 

 
 

 

 
 

2. Since 

 

 
 

3. We have, 

 
 

4. Chain Rule of Probability/Multiplication theorem: 
 

 

We have, 
 

 

 
We can generalize the above to get the chain rule of probability for n events as 
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Total Probability theorem: 
 

Statement: 

Let events C1, C2 . . . Cn form partitions of the sample space S, where all the events have non- zero probability 

  

of occurrence. For any event, A associated with S, according to the total probability theorem, P(A) 

 
 

 
 
 

Proof: From the figure 2, {C1, C2, . . . . , Cn} is the partitions of the sample space S such that,  

Ci ∩ Ck = φ, where i ≠ k and i, k = 1, 2,…,n also all the events C1,C2 . . . . Cn have 

 non zero probability. Sample space S can be given as, 

S = C1 ∪ C2 ∪ . . . . . ∪ Cn 

For any event A,     A = A ∩ S 

                                     = A ∩ (C1 ∪ C2∪ . . . . ∪ Cn) 

                                     = (A ∩ C1) ∪ (A ∩ C2) ∪ … ∪ (A ∩ Cn) . . . . . (1) 

 Here, Ci and Ck are disjoint for i ≠ k. since they are mutually independent events which 

 imply that A ∩ Ci and A ∩ Ck are also disjoint for all i ≠ k. Thus, 

P(A) = P [(A ∩ C1) ∪ (A ∩ C2) ∪ ….. ∪ (A ∩ Cn)] 

= P (A ∩ C1) + P (A ∩ C2) + … + P (A ∩ Cn) . . . . . . . (2) 

We know that, 

P(A ∩ Ci) = P(Ci) P(A|Ci)(By multiplication rule of probability) . . . . (3) 

Using (2) and (3), (1) can be rewritten as, 

P(A) = P(C1)P(A| C1) + P(C2)P(A|C2) + P(C3)P(A| C3) + . . . . . + P(Cn)P(A| Cn) 

Hence, the theorem can be stated in form of equation as, 
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Example: 

A person has undertaken a mining job. The probabilities of completion of job on time with and without 

 rain are 0.42 and 0.90 respectively. If the probability that it will rain is 0.45, then determine the 

probability that the mining job will be completed on time. 
 

Solution:  

Let A be the event that the mining job will be completed on time and B be the 

 event that it rains. We have, 

P(B) = 0.45, 

P(no rain) = P(B′) = 1 − P(B) = 1 − 0.45 = 0.55 

From given data 

P(A|B) = 0.42 

P(A|B′) = 0.90 

Since, events B and B′ form partitions of the sample space S, by total probability theorem, 

 we have 

P(A) = P(B) P(A|B) + P(B′) P(A|B′) 

=0.45 × 0.42 + 0.55 × 0.9 

= 0.189 + 0.495 = 0.684 

So, the probability that the job will be completed on time is 0.684. 
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Bayes' Theorem: 
Statement: 

Let {E1,E2,…,En} be a set of events associated with a sample space S, where all the events E1,E2,…,En  

have nonzero probability of occurrence and they form a partition of S. Let A be any event associated with S, 

then according to Bayes theorem, 

 
Proof: According to conditional probability formula, 

P(Ei│A) = P(Ei∩A)/P(A) ⋯⋯⋯⋯⋯⋯⋯⋯(1) 

Using multiplication rule of probability, 

P(Ei∩A) = P(Ei)P(A/Ei)⋯⋯⋯⋯⋯⋯⋯⋯(2) 

Using total probability theorem 

 
Substitute 2 and 3 in 1 then will get 
 

 

 

Example1: 
In a binary communication system a zero and a one is transmitted with probability 0.6 and 0.4 
respectively. Due to error in the communication system a zero becomes a one with a probability 
0.1 and a one becomes a zero with a probability 0.08. Determine the probability (i) of receiving a 
one and (ii) that a one was transmitted when the received message is one 

Solution: 

Let S is the sample space corresponding to binary communication. Suppose be event of 

Transmitting 0 and be the event of transmitting 1 and  and be corresponding events of 

receiving 0 and 1 respectively. 
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Given and 
 

 

 

Example 2: In an electronics laboratory, there are identically looking capacitors of three makes 

in the ratio 2:3:4. It is known that 1% of , 1.5% of    are defective. 

What percentages of capacitors in the laboratory are defective? If a capacitor picked at defective 

is found to be defective, what is the probability it is of make  ? 

Let D be the event that the item is defective. Here we have to find . 
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Independent events 

 
Two events are called independent if the probability of occurrence of one event does not 

affect the probability of occurrence of the other. Thus the events A and B are independent if 
 

 and  

where and are assumed to be non-zero. 

Equivalently if A and B are independent, we have 
 

 

 
or -------------------- 

 
 

Two events A and B are called statistically dependent if they are not independent. Similarly, we 

can define the independence of n events. The events are called independent if and 

only if 

Example: Consider the example of tossing a fair coin twice. The resulting sample space is 

given by  and all the outcomes are equiprobable. 

 

Let be the event of getting ‗tail' in the first toss and be the 

event of getting ‗head' in the second toss. Then 
 

  and  

Again, so that 
 

Hence the events A and B are independent. 
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Problems: 

 
Example1.A dice of six faces is tailored so that the probability of getting every face is 

proportional to the number depicted on it. 

 

a) What is the probability of extracting a 6? 

In this case, we say that the probability of each face turning up is not the same, therefore we cannot 

simply apply the rule of Laplace. If we follow the statement, it says that the probability of each face 

turning up is proportional to the number of the face itself, and this means that, if we say that the 

probability of face 1 being turned up is k which we do not know, then: 

P({1})=k, P({2})=2k, P({3})=3k, P({4})=4k, 

P({5})=5k,P({6})=6k. 

Now, since {1},{2},{3},{4},{5},{6} form an events complete system , necessarily 

P({1})+P({2})+P({3})+P({4})+P({5})+P({6})=1 

 
Therefore 

 
k+2k+3k+4k+5k+6k=1 

 

which is an equation that we can already solve: 

21k=1 

 

thus 

k=1/21 

 

And so, the probability of extracting 6 is P({6})=6k=6⋅(1/21)=6/21. 

 
b) What is the probability of extracting an odd number? 

 
The cases favourable to event A= "to extract an odd number" are: {1},{3},{5}. Therefore, since   

they are incompatible events, 

P(A)=P({1})+P({3})+P({5})=k+3k+5k=9k=9⋅(1/21)=9/21 
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Example2: Roll a red die and a green die. Find the probability the total is 5. 

Solution: Let represent getting on the red die and on the green die. 

Then, with these as simple events, the sample space is 
 

The sample points giving a total of 5 are (1,4) (2,3) (3,2), and (4,1). 

(total is 5) =  
 

Example3: Suppose the 2 dice were now identical red dice. Find the probability the total is 5. 

 
Solution  : Since we can no longer distinguish between and , the only distinguishable 

points in S are 
 

 

 
 

 

 

 

 

 

: 

 

Using this sample space, we get a total of from points  and only. If we assign equal 

probability  to each point (simple event) then we get (total is 5) = . 

Example4: Draw 1 card from a standard well-shuffled deck (13 cards of each of 4 suits - 

spades, hearts, diamonds, and clubs). Find the probability the card is a club. 

Solution 1: Let  = { spade, heart, diamond, club}. (The points of  are generally listed between 

brackets {}.) Then has 4 points, with 1 of them being "club", so (club) = . 

Solution 2: Let  = {each of the 52 cards}. Then 13 of the 52 cards are clubs, so 
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Example 5: Suppose we draw a card from a deck of playing cards. What is the probability 

that we draw a spade? 

 

Solution: The sample space of this experiment consists of 52 cards, and the probability of each 

sample point is 1/52. Since there are 13 spades in the deck, the probability of drawing a spade is 

 

P(Spade) = (13)(1/52) = 1/4 

 
Example 6: Suppose a coin is flipped 3 times. What is the probability of getting two tails and 

one head? 

 

Solution: For this experiment, the sample space consists of 8 sample points.   

S = {TTT, TTH, THT, THH, HTT, HTH, HHT, HHH} 

Each sample point is equally likely to occur, so the probability of getting any particular sample 

point is 1/8. The event "getting two tails and one head" consists of the following subset of the 

sample space. 

 

A = {TTH, THT, HTT} 

 
The probability of Event A is the sum of the probabilities of the sample points in A. Therefore, 

 
P(A) = 1/8 + 1/8 + 1/8 = 3/8 

 
Example7: An  urn  contains  6  red  marbles  and  4  black  marbles.  Two  marbles  are  

drawn without replacement from the urn. What is the probability that both of the marbles are 

black? 

 

Solution: Let A = the event that the first marble is black; and let B = the event that the second 

marble is black. We know the following: 

 
 In the beginning, there are 10 marbles in the urn, 4 of which are black. Therefore, P(A) = 

4/10. 

 After the first selection, there are 9 marbles in the urn, 3 of which are black. Therefore, 

P(B|A) = 3/9. 

Therefore, based on the rule of multiplication: 

 
P(A ∩ B) = P(A) P(B|A) 

P(A ∩ B) = (4/10) * (3/9) = 12/90 = 2/15 
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RANDOM VARIABLE 

INTRODUCTION 

In many situations, we are interested in numbers associated with the outcomes of a random 

experiment. In application of probabilities, we are often concerned with numerical values which 

are random in nature. For example, we may consider the number of customers arriving at a 

service station at a particular interval of time or the transmission time of a message in a 

communication system. These random quantities may be considered as real-valued function on 

the sample space. Such a real-valued function is called real random variable and plays an 

important role in describing random data. We shall introduce the concept of random variables in 

the following sections. 

 
Random Variable Definition 

 

A random variable is a function that maps outcomes of a random experiment to real 

numbers. (or) 

A random variable associates the points in the sample space with real numbers 

 

A (real-valued) random variable, often denoted by X(or some other capital letter), is a function 

mapping a probability space (S; P) into the real line R. This is shown in Figure 1.Associated with 

each point s in the domain S the function X assigns one and only one value  X(s) in the range R.  

(The set of possible values of X(s) is usually a proper subset of the real line; i.e., not all  real  

numbers need occur. If  S is a finite set with m elements, then X(s) can assume at most an m  

different value as s varies in S.) 
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Example1 

A fair coin is tossed 6 times. The number of heads that come up is an example of a random 

variable. 

HHTTHT – 3, THHTTT -- 2. 

These random variables can only take values between 0 and 6. 

The Set of possible values of random variables is known as its 

Range. Example2 

A box of 6 eggs is rejected once it contains one or more broken eggs. If we examine 10 boxes 

of eggs and define the randomvariablesX1, X2 as 

1 X1- the number of broken eggs in the 10 

boxes 2 X2- the number of boxes rejected 

Then the range of X1 is {0, 1,2,3,4-------------- 60} and X2  is {0,1,2 --- 10} 
Figure 2: A (real-valued) function of a random variable is itself a random variable, i.e., a 

function mapping a probability space into the real line. 

 
Example 3 Consider the example of tossing a fair coin twice. The sample space is S={ 
HH,HT,TH,TT} and all four outcomes are equally likely. Then we can define a random 

variable  as follows 

 

 

Here . 

Example 4 Consider the sample space associated with the single toss of a fair die. The 

sample space is given by . 

 

If we define the random variable  that associates a real number equal to the number on 

the face of the die, then . 

Types of random variables: 

 

There are two types of random variables, discrete and continuous. 

 
1. Discrete random variable: 
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is an 

 

 

 

 

A discrete random variable is one which may take on only a countable number of distinct 

values such as 0, 1,2,3,4,. ........ Discrete random variables are usually (but not necessarily) counts. If 

a random variable can take only a finite number of distinct values, then it must be discrete 

(Or) 

A random variable      is called a discrete random variable if is piece-wise constant. 

Thus is flat except at the points of jump discontinuity. If the sample space is discrete the 

random  variable  defined on it is always discrete. 

•A discrete random variable has a finite number of possible values or an infinite sequence of 

countable real numbers. 

–X: number of hits when trying 20 free throws. 

–X: number of customers who arrive at the bank from 8:30 – 9:30AM Mon-‐Fri. 

–E.g. Binomial, Poisson... 

 
 

2. Continuous random variable: 

 

A continuous random variable is one which takes an infinite number of possible values. Continuous  rando 

variables are usually measurements. E 

A continuous random variable takes all values in an interval of real numbers. 

(or) 

X is called a continuous random variable if absolutely continuous function 

of  x . Thus is  continuous  everywhere on and exists everywhere except at finite or 
countably infinite points 

3. Mixed random variable: 

X is called a mixed random variable if  has jump discontinuity at countable number of 
points and increases continuously at least in one interval of X. For a such type RV X. 

 
Conditions for a Function to be a Random Variable: 
 

1. Random variable must not be a multi valued function. i.e  two or more values of X cannot  
assign for  Single outcome. 
 

2. P(X=∞)=P(X= -∞)=0 
 

3. The probability of the event (X≤x) must be equal to the sum of probabilities of all the events 
Corresponding to (X≤x).
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Bernoulli’s trials: 
Bernoulli Experiment with n Trials Here are the rules for a Bernoulli experiment.  

1. The experiment is repeated a fixed number of times (n times). 

2. Each trial has only two possible outcomes, “success” and “failure”. The possible outcomes are exactly the 

   same for each trial.  

3. The probability of success remains the same for each trial. We use p for the probability of success 

 (on each trial) and q = 1 − p for the probability of failure. 

 4. The trials are independent (the outcome of previous trials has no influence on the outcome of the next trial).  

5. We are interested in the random variable X where X = the number of successes. Note the possible values  

  of X are 0, 1, 2, 3, . . . , n. 

An experiment in which a single action, such as flipping a coin, is repeated identically over and over.  

The possible results of the action are classified as "success" or "failure". The binomial probability formula 

 is used to find probabilities for Bernoulli trials. 

 
n = number of trials 

k = number of successes 

n – k = number of failures 

p = probability of success in one trial 

q = 1 – p = probability of failure in one trial 
 

Problem 1: 
If the probability of a bulb being defective is 0.8, then what is the probability of the bulb not being defective. 

Solution:  

Probability of bulb being defective, p = 0.8 

Probability of bulb not being defective, q = 1 - p = 1 - 0.8 = 0.2 

 

Problem 2: 
10 coins are tossed simultaneously where the probability of getting head for each coin is 0.6. Find the 

 probability of getting 4 heads. 

Solution:  

Probability of getting head, p = 0.6 

Probability of getting head, q = 1 - p = 1 - 0.6 = 0.4 

Probability of getting 4 heads out of 10,  
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                                                             UNIT II 

Distribution and density functions and Operations on One Random Variable 
 

Distribution and density functions: 

 

 Distribution function and its Properties 

 Density function and its Properties 

 Important Types of Distribution and density functions 

 Binomial

 Uniform

 Exponential

 Gaussian

 Conditional Distribution 

 Conditional Density function and its properties 

 Problems 

 
Operation on One Random Variable: 

 

 Expected value of a random variable, function of a random variable 

 Moments about the origin 

 Central moments - variance and skew 

 Characteristic function 

 Moment generating function.
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Probability Distribution 

 

The probability distribution of a discrete random variable is a list of probabilities associated with 

each of its possible values. It is also sometimes called the probability function  or the probability 

mass function. 

 
More formally, the probability distribution of a discrete random variable X is a function  which  

gives the probability p(xi) that the random variable equals xi, for each value xi: 

p(xi) = P(X=xi) 

 
It satisfies the following conditions: 

 
a. 

b. 
 

 

Cumulative Distribution Function 

 

All random variables (discrete and continuous) have a cumulative distribution function. It is a 

function giving the probability that the random variable X is less than or equal to x, for every value 

x. 

 

Formally, the cumulative distribution function F(x) is defined to be: 

for 
 

 
For a discrete random variable, the cumulative distribution function is found by summing up the 

probabilities as in the example below. 

 
For a continuous random variable, the cumulative distribution function is the integral of its 

probability density function. 

 

Example 

Discrete case : Suppose a random variable X has the following probability distribution p(xi): 

xi 0 1 2 3 4 5 

p(xi) 1/32 5/32 10/32 10/32 5/32 1/32 

This is actually a binomial distribution: Bi(5, 0.5) or B(5, 0.5). The cumulative distribution function 

F(x) is then: 

xi 0 1 2 3 4 5 

 

F(xi) 1/32 6/32 16/32 26/32 31/32 32/32 

 
F(x) does not change at intermediate values. For example: 

F(1.3) = F(1) = 6/32 and F(2.86) = F(2) = 16/32 
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Is right continuous. 

 

 

 
Probability Distribution Function 

 
The  probability  is called the probability distribution 

function ( also called the cumulative distribution function , abbreviated as CDF ) of  and 

denoted by  . Thus 

 

 
Properties of the Distribution Function 

1.  

 
2.   is a non-decreasing function of . Thus, if  

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

3. 
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. 

 
 

 

 

 

. 

4. 

 

5. 

We have, 
 

 

 

 

6. 

 

 

 

Example: Consider the random variable  in the above example. We have 
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Thus we have seen that given  , we can determine the probability of any event 

involving values of the random variable  .Thus is a complete description of the 

random  variable  . 

 

Example 5 Consider the random variable  defined by 

 

 
 

 
Find  a) . 

 
b) . 

 
c) . 

d) . 

 

Solutio 
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Probability Density Function 

 

The probability density function of a continuous random variable is a function which can be  

integrated to obtain the probability that the random variable takes a value in a given interval. 

 

More formally, the probability density function, f(x), of a continuous random variable X is the 

derivative of the cumulative distribution function F(x): 

 

Since it follows that: 

 

 
If f(x) is a probability density function then it must obey two conditions: 

 
a. that the total probability for all possible values of the continuous random variable X is 1: 

 

 
b. that the probability density function can never be negative: f(x) > 0 for all x. 
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Example 1 

 

Consider the random variable  with the distribution function 

 

 

 

 

 

 

 
The plot of the is shown in Figure 7 on next page. 

 

 
The probability mass function of the random variable is given by 

 
 

0 

1 

 
2 

pX(x) 
Value of the random 

variable X =x 
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Properties of the Probability Density Function 

1.   .------- This follows from the fact that is a non-decreasing function 

2.  

3.  

4.  

Other Distribution and density functions of Random variable: 
 

1. Binomial random variable 

Suppose X is a discrete random variable taking values from the set .  is called a 

binomial random variable with parameters n  and  if 
 

where 
 

The trials must meet the following requirements: 

 

a. the total number of trials is fixed in advance; 

b. there are just two outcomes of each trial; success and failure; 

c. the outcomes of all the trials are statistically independent; 

d. all the trials have the same probability of success. 
 

As we have seen, the probability of k successes in n independent repetitions of the Bernoulli 

trial is given by the binomial law. If X is a discrete random variable representing the number of 

successes in this case, then X is a binomial random variable. For example, the number of heads in ‗n 
' independent tossing of a fair coin is a binomial random variable. 

 

 The  notation is  used to represent  a binomial  RV  with the parameters and 
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





 The sum of n independent identically distributed Bernoulli random variables is a 
binomial random variable. 

  The binomial distribution is useful when there are two types of objects - good, 
bad; correct, erroneous; healthy, diseased etc 

 

Example1:In a binary communication system, the probability of bit error is 0.01. If a block of 8 
bits are transmitted, find the probability that 

 
(a) Exactly 2 bit errors will occur 

 

(b) At least 2 bit errors will occur 

 
(c) More than 2 bit errors will occur 

 
(d) All the bits will be erroneous 

 

Suppose  is the random variable representing the number of bit errors in a block of 8 bits. 

Then  
 

Therefore, 
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The probability mass function for a binomial random variable with n = 6 and p =0.8 
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Mean and Variance of the Binomial Random Variable 
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2. Uniform Random Variable 

 
A continuous random variable X is called uniformly distributed over the interval [a, b], 

 

, if its probability density function is given by 
 

 

 

 
 

 
Figure 1 

 

We use the notation to denote a random variable X uniformly distributed over the 

interval [a,b] 

 

Distribution function  

 

 

Figure 2 illustrates the CDF of a uniform random variable. 
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Figure 2: CDF of a uniform random variable 

 
Mean and Variance of a Uniform Random Variable: 
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3. Normal or Gaussian Random Variable 

 
The normal distribution is the most important distribution used to model natural and man made 

phenomena. Particularly, when the random variable is the result of the addition of large number of 

independent random variables, it can be modeled as a normal random variable. 

 
continuous random variable X is called a normal or a Gaussian random variable with 

parameters and if its probability density function is given by, 

 

 

 

 

 
Where and are real numbers. 

We write that X is distributed. 

If and , and the random variable X is called the standard normal variable. 
 

Figure 3 illustrates two normal variables with the same mean but different variances. 
 

 
 

 

 

 
Figure 3 
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 Is a bell-shaped function, symmetrical about . 

  Determines the spread of the random variable X . If is small X is more 

concentrated around the mean . 

 
 Distribution function of a Gaussian variable is 

 
 

 

Substituting   , we get 

 

 

where is the distribution function of the standard normal variable. 

 

Thus  can be computed from tabulated values of . The table was very useful in the 

pre-computer days. 

 

In communication engineering, it is customary to work with the Q function defined by, 

 

 

 

 

 
 

Note that and 
 

These results follow from the symmetry of the Gaussian pdf. The function  is tabulated and the 

tabulated results are used to compute probability involving the Gaussian random variable. 
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Using the Error Function to compute Probabilities for Gaussian Random Variables 
 

The function  is closely related to the error function and the complementary error 

function . 

Note that,  

And the complementary error function is given 
 

 
Mean and Variance of a Gaussian Random Variable 

 

If X is  distributed, then 

Proof: 
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4. Exponential Random Variable 

 
A continuous random variable is called exponentially distributed with the parameter 

 

 

 

 

if the probability density function is of the 

PDF of Exponential Random Variable is 
 

 

 

 

 

Example 1 

 

Suppose the waiting time of packets in  in a computer network is an exponential RV with 
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Conditional Distribution and Density functions: 

 
We discussed conditional probability in an earlier lecture. For two events A and B 

with , the conditional probability was defined as 

 
 

Clearly, the conditional probability can be defined on events involving a Random Variable X 

 
Conditional distribution function: 

Consider the event and any event B involving the random variable X . The 

conditional distribution function of X given B is defined as 
 

 

We can verify that satisfies all the properties of the distribution function. 

Particularly. 

 
 And . 

 . 

 Is a non-decreasing function of  . 

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





Conditional Probability Density Function 

 
In a similar manner, we can define the conditional  density function of the 

random variable X given the event B as 

 

 
 

All the properties of the pdf applies to the conditional pdf and we can easily show that 

 





  

  
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OPERATIONS ON RANDOM VARIABLE 

 

Expected Value of a Random Variable: 

 
 The expectation operation extracts a few parameters of a random variable and provides    

a summary description of the random variable in terms of these parameters. 

 It is far easier to estimate these parameters from data than to estimate the distribution or 
density function of the random variable. 

 Moments are some important parameters obtained through the expectation operation. 

 

     Expected value or mean of a random variable 
 

  The expected value  of a random variable X  is defined by  

    ( )XEX xf x dx




   

provided ( )Xxf x dx




  exists. 

EX  is also called the mean or statistical average of the random variable  X  and denoted by  .X  

 

Note that, for a discrete RV X  defined by the probability mass function (pmf)  ( ), 1,2,...., ,X ip x i N  the 

pdf  ( )Xf x  is given by 

1

( ) ( ) ( )
N

X X i i

i

f x p x x x


   

1

1

1

( ) ( )

       = ( ) ( )

       = ( )

N

X X i i
i

N

X i i
i

N

i X i
i

EX x p x x x dx

p x x x x dx

x p x

 









 



   

 



 

Thus for a  discrete random variable X  with   ( ), 1,2,...., ,X ip x i N    

 

X
1

       = ( )
N

i X i
i

x p x


  

 

             Interpretation of the mean 
 

 The mean gives an idea about the average value of the random value. The values of the random variable are 

spread about this value. 

 Observe that  

        

( )

( )

                ( ) 1

( )

X X

X

X

X

xf x dx

xf x dx

f x dx

f x dx
















 


 



 

            Therefore, the mean can be also interpreted as the centre of gravity of the pdf curve. 
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                        Fig.  Mean of  a random variable 

     
Example 1   Suppose X  is a random variable defined by the pdf 

1

( )            
otherwise

0
X

a x b
f x b a


 

 



 

Then 
 

( )

1
     

     
2

X

b

a

EX xf x dx

x dx
b a

a b





 

 





 

Example 2   Consider the random variable X  with pmf as tabulated below 

 

 

Value of the random 

variable x  

0 1 2 3 

( )Xp x  1

8  

1

8  

1

4  

1

2  

X
1

       = ( )

1 1 1 1
            =0 1 2 3

8 8 4 2

17
            =

8

N

i X i
i

x p x


 

        

 

Remark If ( )Xf x  is an even function of ,x  then  ( ) 0.Xxf x dx




 Thus the mean of a RV with an even symmetric 

pdf is 0. 

 

Expected value of a function of a random variable 
 

Suppose ( )Y g X  is a function of a random variable X as discussed in the last class. Then,  

( ) ( ) ( )XEY Eg X g x f x dx




    

 

We shall illustrate the theorem in the special case ( )g X when ( )y g x  is one-to-one and monotonically 
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increasing function of .x  In this case, 

 

1 ( )

( )
( )

( )

X

Y

x g y

f x
f y

g x 


  

 

1

12

1

( )

( ( ))
      =

( ( )

Y

y
X

y

EY yf y dy

f g y
y dy

g g y









 




 

 

where 1 2( ) and ( ).y g y g     

Substituting  
1( ) so that  ( ) and ( ) ,x g y y g x dy g x dx     we get  

 

= ( ) ( )XEY g x f x dx




  

The following important properties of the expectation operation can be immediately derived: 

 

(a) If c is a constant,  

            Ec c  

 
Clearly 

             ( ) ( )X XEc cf x dx c f x dx c
 

 

     

 

 

(b) If 1 2( ) and ( ) g X g X are two functions of the  random variable  X  and 1 2 and c c  are constants,  

  1 1 2 2 1 1 2 2[ ( ) ( )]= ( ) ( )E c g X c g X c Eg X c Eg X   

             

1 1 2 2 1 1 2 2

1 1 2 2

1 1 2 2

[ ( ) ( )] [ ( ) ( )] ( )

                                = ( ) ( ) ( ) ( )

                               =  ( ) ( ) ( ) ( )

            

X

X X

X X

E c g X c g X c g x c g x f x dx

c g x f x dx c g x f x dx

c g x f x dx c g x f x dx





 

 

 

 

  

 

 

1 1 2 2                  = ( ) ( )c Eg X c Eg X

 

The above property means that E  is a linear operator. 
 

 

Mean-square value 

               2 2 ( )XEX x f x dx




   

Variance 

For  a random variable X  with the  pdf  ( )Xf x and men ,X the variance of  X  is denoted by  
2

X  and defined as 

               
2 2 2( ) ( ) ( )X X X XE X x f x dx  





     

Thus for a discrete random variable X  with   ( ), 1,2,...., ,X ip x i N    

 

                      

2 2
X

1

      = ( ) ( )
N

i X X i
i

x p x 


  

 

( )g x
 

1y
 

1y
 

 

2y

 

 

x  

1y
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                      The standard deviation of X  is defined as 

                               
2( )X XE X    

 

 

 

E                          Example3: Find the variance of the random variable discussed in Example 1. 
 

                   

2 2

2

2

2

2

( )

1
     ( )

2

1
     = [ 2

2 2

( )
     

12

X X

b

a

b b b

a a a

E X

a b
x dx

b a

a b a b
x dx xdx dx

b a

b a

  


 



  
     

  




 

 

           Example4:  Find the variance of the random variable discussed in Example 2. 
                                  As already computed  

                        

17

8
X   

                        

2 2

2 2 2 2

( )

17 1 17 1 17 1 17 1
     (0 ) (1 ) (2 ) (3 )

8 8 8 8 8 4 8 2
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128

X XE X  

           



 

 

 

                    Remark 
 Variance is a central moment and measure of dispersion of the random variable about the 

mean. 

 2( )XE X   is the average  of the square deviation  from  the mean. It gives information about the 

deviation of the values  of the RV about the mean. A smaller  
2

X  implies that the random values are 

more clustered about the mean, Similarly, a bigger  
2

X means that the random values are more 

scattered.  

    For example, consider two random variables 1 2 and XX  with pmf as shown below.  Note that each of 

1 2 and XX  has zero means. 
1

2 1

2
X   and 

2

2 5

3
X    implying that  2 X  has more spread about the 

mean 
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Properties of variance: 

 

     (1)    2 2 2
X XEX    

 

               

2 2

2 2

2 2

2 2 2

2 2

( )

     ( 2 )

     2

     2

     

X X

X X

X X

X X

X

E X

E X X

EX EX E

EX

EX

 

 

 

 



 

  

  

  

 

 

(2) If ,  where  and  are constants,Y cX b c b   then 2 2 2
Y Xc   

2 2

2 2

2 2

( )

     ( )

     

Y X

X

X

E cX b c b

Ec X

c

 





   

 


 

(3) If   c is a constant, 

var( ) 0.c 
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           Moments: 

          The nth moment of a distribution (or set of data) about a number is the expected value of the nth                      

power of the deviations about that number. In statistics, moments are needed about the mean, and about 

the origin. 

1. Moments about origin. 

2. Moments about mean or central moments 

 The nth moment of a distribution about zero is given by E(Xn) 

 The nth moment of a distribution about the mean is given by E[(X−μ)n] 

Then each type of measure includes a moment definition. 

 The expected value, E(X), is the first moment about zero. 

 The variance, Var(X)), is the second moment about the mean, E[(X−μ)2] 

 A common definition of skewness is the third moment about the mean, E[(X−μ)3] 

 A common definition of kurtosis is the fourth moment about the mean, E[(X−μ)4] 

Since moments about zero are typically much easier to compute than moments about the mean, alternative 

formulas are often provided. 

 Var(X)=E[(X−μ)2]=E(X2)−[E(X)]2 

 Skew(X)=E[(X−μ)3]=E(X3)−3E(X)E(X2)+2[E(X)]3 

 Kurt(X)=E[(X−μ)4]=E(X4)−4E(X)E(X3)+6[E(X)]2 E(X2)−3[E(X)]4 

 
    nth moment of a random variable  

   We can define the nth moment  and the nth central-moment of a  random variable X by the following relations 

   

nth-orde   moment   ( )    1, 2,..

nth-orde   central moment  ( ) ( ) ( )  1, 2,...

n n
X

n n
X X X

r EX x f x dx n

r E X x f x dx n 









 

   

 

       Note that  

 The mean X =  EX  is the first moment  and the mean-square value 
2  EX  is the second moment 

 The first central moment is 0 and the variance  is the second central moment 

 The third central moment measures lack of symmetry of the pdf of a random variable. 
3

3

  ( )X

X

E X 




 is 

called the coefficient of  skewness and If the pdf  is symmetric  this coefficient will be zero. 

 The  fourth central moment  measures flatness of peakednes of the pdf of a random variable. 

4

4

  ( )X

X

E X 




 is called kurtosis.  If the  peak of the pdf is sharper,  then the random variable has a higher 

kurtosi

2 2( )X XE X  
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  Moment generating function: 

   Since each moment is an expected value, and the definition of expected value involves either a sum (in    

the discrete case) or an integral (in the continuous case), it would seem that the computation of moments 

could be tedious. However, there is a single expected value function whose derivatives can produce each 

of the required moments. This function is called a moment generating function. 

In particular, if X is a random variable, and either P(x) or f(x)is the PDF of the distribution (the first is 

discrete, the second continuous), then the moment generating function is defined by the following 

formulas.  

 

when the nth derivative (with respect to t) of the moment generating function is evaluated at t=0t=0, 

the nth moment of the random variable X about zero will be obtained. 

 

Properties of moment generating function 

(a) The most significant property of moment generating function is that ``the moment generating function 

uniquely determines the distribution.'' 

(b) Let  and  be constants, and let  be the mgf of a random variable . Then the mgf of the 

random variable  can be given as follows. 

 

(c) Let  and  be independent random variables having the respective mgf's  and . 

Recall that        

For functions  and . 

 We can obtain the mgf  of the sum  of random variables as follows. 
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(d) When , it clearly follows that . Now by differentiating   times, we obtain 

 

In particular when ,  generates the -th moment of  as follows. 

 
 

Characteristic function 

 
There are random variables for which the moment generating function does not exist on any real interval 

with positive length. For example, consider the random variable X that has a Cauchy distribution 

 
You can show that for any nonzero real number s 

 

Therefore, the moment generating function does not exist for this random variable on any real interval 

with positive length. If a random variable does not have a well-defined MGF, we can use the 

characteristic function defined as 

                                         ∅𝑋(𝜔) = 𝐸[𝑒𝐽𝜔𝑋] 
It is worth noting that 𝑒𝐽𝜔𝑋  is a complex-valued random variable. We have not discussed complex-valued 

random variables. Nevertheless, you can imagine that a complex random variable can be written 

as X=Y+jZX=Y+jZ, where Y and Z are ordinary real-valued random variables. Thus, working with a 

complex random variable is like working with two real-valued random variables. The advantage of the 

characteristic function is that it is defined for all real-valued random variables. Specifically, if X is a real-

valued random variable, we can write 

 
The characteristic function has similar properties to the MGF.  

 

    1.If X and Y are independent 

ϕX+Y(ω)=E[ejω(X+Y)] 

               =E[ejωXejωY] 

              =E[ejωX]E[ejωY]        (since X and Y areindependent) 

        =ϕX(ω)ϕY(ω) 
 More generally, if X1X1, X2X2, ..., XnXn are nn independent random variables, then 

ϕX1+X2+⋯+Xn(ω)=ϕX1(ω)ϕX2(ω)⋯ϕXn(ω). 
 

 
2. Characteristic function and probability density function form Fourier transform pair. i.e
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Example 1 

 
Consider the random variable X with pdf given by 

 

 
= 0 otherwise. The characteristics function is given by 

 

 

 
Solution: 

 

 

 

 

 

 

 

 

 
Example 2 

 
The characteristic function of the random variable with 

 

 

 

 

 

 

 

 

 

Characteristic function of a discrete random variable 

 
Suppose X is a random variable taking values from the  discrete set with 

corresponding probability mass function for the value 

Then, 
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If Rx is the set of integers, we can write 

 
In this case  can be interpreted as the discrete-time Fourier transform with 

substituting in the original discrete-time Fourier transform. The inverse relation is 

 

 

 

 

 

 

 

 

 

 

 

 
Moments and the characteristic function 
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UNIT III 

Multiple Random Variables and Operations on Multiple Random Variables 

 
Multiple Random Variables: 

 

 Joint Distribution Function and Properties 

 Joint density Function and Properties 

 Marginal Distribution and density Functions 

 Conditional Distribution and density Functions 

 Statistical Independence 

 Distribution and density functions of Sum of Two Random Variables  
 

Operations on Multiple Random Variables: 

 

 Expected Value of a Function of Random Variables 

 Joint Moments about the Origin 

 Joint Central Moments 

 Joint Characteristic Functions 

 Jointly  Gaussian  Random  Variables:  Two  Random  Variables  case   
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MULTIPLE RANDOM VARIABLES 

Multiple Random Variables 

 
In many applications we have to deal with more than two random variables. For example, 

in the navigation problem, the position of a space craft is represented by three random variables 
denoting the x, y and z coordinates. The noise affecting the R, G, B channels of color video may 
be represented by three random variables. In such situations, it is convenient to define the vector-
valued random variables where each component of the vector is a random variable. 

 
In this lecture, we extend the concepts of joint random variables to the case of multiple 

random variables. A generalized analysis will be presented for random variables defined on the 
same sample space. 

 

Example1: Suppose we are interested in studying the height and weight of the students in a 

class. We can define the joint RV ( , )X Y  where  X  represents height and Y represents the 

weight. 

 

Example 2      Suppose in a communication system X    is    the transmitted signal and   Y  is the    

corresponding noisy received signal.  Then ( , )X Y  is a joint random variable. 

 

Joint Probability Distribution Function: 
 

 Recall the definition of the distribution of a single random variable. The event  
{ }X x

 was used 

to define the probability distribution function 
( ).XF x

 Given  
( ),XF x

 we can find the probability of any 

event involving the random variable. Similarly, for two random variables X and ,Y  the event  

{ , } { } { }X x Y y X x Y y       is considered as the representative event. 

  
The probability 

2{ , } ( , )P X x Y y x y    is called the joint distribution function of the 

random variables X and Y  and denoted by ).,(, yxF YX  

Properties of Joint Probability Distribution Function: 
 

The joint CDF satisfies the following properties: 

1. FX(x)=FXY(x,∞) , for any x (marginal CDF of X); 

Proof: 

 

Similarly  ).,()( yFyF XYY   

 

2. FY(y)=FXY(∞,y), for any y (marginal CDF of Y); 

3. FXY(∞,∞)=1; 

4. FXY(−∞,y)=FXY(x,−∞)=0; 

5. P(x1<X≤x2,y1<Y≤y2)= FXY(x2,y2)−FXY(x1,y2)−FXY(x2,y1)+FXY(x1,y1); 

6. if X and Y are independent, then FXY(x,y)=FX(x)FY(y) 

7. , 1 1 , 2 2 1 2 1 2( , ) ( , )  if   and  yX Y X YF x y F x y x x y    

Proof: 

   

   { } { } { }

( ) { } { , } ( , )
X XY

X x X x Y

F x P X x P X x Y F x

     

        
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: 

1 2 1 2

1 1 2 2

1 1 2 2

, 1 1 , 2 2

If  and   y ,

{ , } { , }

{ , } { , }

( , ) ( , )X Y X Y

x x y

X x Y y X x Y y

P X x Y y P X x Y y

F x y F x y

 

    

     

 

 

 

                 Example1: 
 

                  Consider two jointly distributed random variables X  and Y with the joint CDF 

                       

2

,

(1 )(1 )  0, 0
( , )

0                        otherwise   

x y

X Y

e e x y
F x y

     
 


 

(a) Find the marginal  CDFs 

(b) Find the probability  {1 2,   1 2}P X Y     

Solution:  

                 (a)              

2

,

,

1     0
( ) lim ( , )

0             elsewhere

1     y 0
( ) lim ( , )

0             elsewhere

x

X X Y
y

y

Y X Y
x

e x
F x F x y

e
F y F x y









  
  



  
  



 

                          (b)        

, , , ,

4 2 2 1 2 2 4 1

{1 2,   1 2} (2,2) (1,1) (1,2) (2,1)

                                       (1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )

                                        =0.02

X Y X Y X Y X YP X Y F F F F

e e e e e e e e       

       

           
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         Jointly distributed discrete random variables 
 

 If  X and Y are   two discrete random variables defined on the same probability space 

( , , )S F P   such that X takes values from the countable subset XR and  Y takes values from the 

countable subset .YR Then the joint random variable ( , )X Y can take values from the countable subset in 

.X YR R   The joint random variable ( , )X Y is  completely specified  by their joint probability mass 

function 

          , ( , ) { | ( ) , ( ) },   ( , ) .X Y X Yp x y P s X s x Y s y x y R R     
 

 
Given , ( , ),X Yp x y  we can determine other probabilities involving the random variables X and .Y  

  

Remark 

 , ( , ) 0 for ( , )X Y X Yp x y x y R R    

 ,
( , )

( , ) 1
X Y

X Y
x y R R

p x y
 

   

 This is because   

,
( , )( , )

( , ) ( { , })

                               = ( )

                               = { | ( ( ), ( )) ( )}

                               = ( ) 1

X YX Y

X Y
x y R Rx y R R

X Y

X Y

p x y P x y

P R R

P s X s Y s R R

P S

  

 



 


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 Marginal Probability Mass Functions:  The probability mass functions ( )Xp x   and  
( )Yp y  are  obtained from the joint probability mass function as follows 

           
,

( ) { }

          = ( , )
Y

X Y

X Y
y R

p x P X x R

p x y


 

  

 

            and similarly 

            ,( ) ( , )
X

Y X Y
x R

p y p x y


   

      These probability mass functions ( )Xp x   and  ( )Yp y  obtained  from the joint probability mass 
functions are called marginal probability mass functions. 

Example Consider the random variables   and X Y  with the joint probability mass function as 

tabulated in Table . The marginal probabilities are as shown in the last column and the last row 
 

 

X
 

Y
 

0 1 2 ( )Yp y
 

0 0.25 0.1 0.15 0.5 

1 0.14 0.35 0.01 0.5 

( )Xp x  
0.39 0.45  

 

 

Joint Probability Density Function 
 

If  X  and Y are   two   continuous random variables and their joint distribution function is continuous 

in both  x  and ,y  then we can define joint probability density function , ( , )X Yf x y by 

2

, ,( , ) ( , ),X Y X Yf x y F x y
x y



 

 provided it exists. 

Clearly , ,( , ) ( , )
yx

X Y X YF x y f u v dvdu
 

  
 

            Properties of Joint Probability Density Function: 
 

 ),(, yxf YX is always a non-negative quantity. That is, 

 

          
2

, ( , ) 0   ( , )X Yf x y x y    

 , ( , ) 1X Yf x y dxdy
 

 

   

 Marginal probability density functions can be defined as 

 
 The probability of any  Borel set B  can be obtained by 

,
( , )

( ) ( , )X Y
x y B

P B f x y dxdy


   
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Marginal Distribution and density Functions: 
 

The probability distribution functions of random variables X and Y obtained from joint 

distribution function is called ad marginal distribution functions. i.e.            

      FX(x)=FXY(x,∞) , for any x (marginal CDF of X); 

Proof: 

 

Similarly  ).,()( yFyF XYY   

 

The marginal density functions ( )Xf x and ( )Yf y  of two joint RVs  and X Y are given by the 

derivatives of the corresponding marginal distribution functions. Thus  

,

,

,

          ( ) ( )

                   ( , )

                   ( ( , ) )

                   ( , )

and similarly    ( ) ( , )

d
X Xdx

d
Xdx

x
d

X Ydx

X Y

Y X Y

f x F x

F x

f u y dy du

f x y dy

f y f x y dx



 











 

  

 

 

 

 
The marginal CDF and pdf  are same as the CDF and pdf of the concerned single random variable. The 

marginal term simply refers that it is derived from the corresponding joint distribution or density function 

of two or more jointly random variables. 

 

Example2: The joint density function , ( , )X Yf x y  in the previous example is 

 
2

, ,

2
2

2

( , ) ( , )

               [(1 )(1 )]   0, 0

               2     0, 0

X Y X Y

x y

x y

f x y F x y
x y

e e x y
x y

e e x y

 

 



 


    
 

  

 

 

Example3: The joint pdf of two random variables  X  and Y are given by 

, ( , )    0 2,  0 2

                0  otherwise

X Yf x y cxy x y    


 

(i) Find .c   

(ii) Find  ,   ( , )X yF x y  

(iii) Find     ( )Xf x  and    ( ).Yf y  

(iv) What is the probability  (0 1, 0 1)?P X Y      

   

   { } { } { }

( ) { } { , } ( , )
X XY

X x X x Y

F x P X x P X x Y F x

     

        
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2 2

,
0 0

y

,
0 0

2 2

2

0

( , )   

1

4

1
( , )   

4

                
16

( )  0 2     
4

              0 2     
2

Similarly

( )          0 2     
2

X Y

x

X Y

X

Y

f x y dydx c xydydx

c

F x y uvdudv

x y

xy
f x dy y

x
y

y
f y y

 

 


 





  

  

  

   

 



 

 

, , , ,

(0 1, 0 1)

                                      (1,1) (0, 0) (0,1) (1, 0)

1
                                        = 0 0 0

16

1
                                        =

16

X Y X Y X Y X Y

P X Y

F F F F

   

   

    

 

Conditional Distribution and Density functions 

 

We discussed conditional probability in an earlier lecture. For two events A and B with ( ) 0P B  , the 

conditional probability  /P A B was defined as 

    
 

 
/

P A B
P A B

P B


  

 
Clearly, the conditional probability can be defined on events involving a random variable X. 

 

Conditional distribution function 
 

Consider the event  X x and any event B involving the random variable X. The conditional 

distribution function of X given B is defined as 

 

 

   

 

 
 

/ /

0

XF x B P X x B

P X x B
P B

P B

   

    
 

Properties of Conditional distribution function 

 

We can verify that  /XF x B  satisfies all the properties of the distribution function. Particularly. 

  / 0XF B   and  / 1.XF B   

  0 / 1XF x B   
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  /XF x B  is a non-decreasing function of .x  

   
 1 2 2 1

2 1

( / ) ({ }/ ) ({ }/ )

                                ( / ) ( / )X X

P x X x B P X x B P X x B

F x B F x B

     

 
 

Conditional density function 

In a similar manner, we can define the conditional density function  /Xf x B of the random variable X 

given the event B as  

 

    / /X X

d
f x B F x B

dx
  

Properties of Conditional density function: 

 

All the properties of the pdf applies to the conditional pdf and we can easily show that 

  / 0Xf x B   

    / / 1X Xf x B dx F B





    

    / /

x

X XF x B f u B du


   

 

 

 
2

1

1 2 2 1( / ) ( / ) ( / )

                               /

X X

x

X

x

P x X x B F x B F x B

f x B dx

   

 
 

 Let (X, Y ) be a discrete bivariate random vector with joint pmf f(x, y) and marginal pmfs fX(x) and  

fY (y). For any x such that P(X = x) = fX(x) > 0, the conditional pmf of Y given that X = x is the function 

of y denoted by f(y|x) and defined by 

 
For any y such that P(Y = y) = fY (y) > 0, the conditional pmf of X given that Y = y is the function of x 

denoted by f(x|y) and defined by 

 

 
 

Example 1: Suppose X is a random variable with the distribution function  XF x . Define  B X b  . 

 
Then  

 
  

 

    
 

    
 

/X

X

P X x B
F x B

P B

P X x X b

P X b

P X x X b

F b

 


  




  


 

Case 1: x<b 
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Then 

 

 
    

 

  
 

 

 

/X

X

X

X X

P X x X b
F x B

F b

P X x F x

F b F b

  



 

 

 

And  
 

 

 

 
/

X X

X

X X

F x f xd
f x B

dx F b f b
   

 

Case 2: x b  

 

 
    

 

  
 

 

 

/

1

X

X

X

X X

P X x X b
F x B

F b

P X x F b

F b F b

  



  

 

 

 
 

and    / / 0X X

d
f x B F x B

dx
   

 

 /XF x B  and  /Xf x B are plotted in the following figures. 

 

 

 

 
 

 

 

 

b  x  

( )XF x  

( / )XF x B  
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Example 2   Suppose X  is a random variable with the distribution function  XF x and  B X b  . 

 

Then  

 
  

 

    
 

    
 

/

1

X

X

P X x B
F x B

P B

P X x X b

P X b

P X x X b

F b

 


  




  




 

For ,x b    { } .X x X b      Therefore, 

 

   / 0                 XF x B x b   

For ,x b    { } { }X x X b b X x       Therefore, 

 
  

 

   

 

/
1

              
1

X

X

X X

X

P b X x
F x B

F b

F x F b

F b

 









 

 
Thus, 

     

 

0                                               
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The corresponding pdf is given by 
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Example4: 
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Conditional Probability Distribution Function 

 
Consider two continuous jointly random variables and with the joint probability 

distribution function We are interested to find the conditional distribution function of 

one of the random variables on the condition of a particular value of the other random variable. 

 

We cannot define the conditional distribution function of the random variable on the 

condition of the event by the relation 

 

 

 

as in the above expression. The conditional distribution function is defined in the 

limiting sense as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conditional Probability Density Function 

 

is called the conditional probability density function of 

given 
 

Let us define the conditional distribution function . 

 
The conditional density is defined in the limiting sense as follows 
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Because, 
 

The right hand side of the highlighted equation is 

 

 

 

 

 

 

 

 

 
Similarly we have 

 

 

Two random variables are statistically independent if for all 
 

 
 

 

 

 

 

• 

 
Example 2 X and Y are two jointly random variables with the joint pdf given by 

 

 

 

find, 

(a) 

(b) 

(a)  
 

Solution: 
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Since 
 

We get 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Independent Random Variables (or) Statistical Independence 

 
Let and be two random variables characterized by the joint distribution function 

 

 

 
 

 

and the corresponding joint density function 

Then and are independent if and are independent events. 

Thus, 
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and equivalently 

 
Density function of Sum of Two Random Variables: 

 
We are often interested in finding out the probability density function of a function of two or 

more RVs. Following are a few examples. 

 

• The received signal by a communication receiver is given by 

 

 
 

where is received signal which is the superposition of the message signal and the noise . 

 

 

 

 

 

 

 

 

• The frequently applied operations on communication signals like modulation, 
demodulation, correlation etc. involve multiplication of two signals in the form Z = XY. 

 
We have to know about the probability distribution of in any analysis of . More formally, 

given two random variables X and Y with joint probability density function  and a 

function we have to find . 

In this lecture, we shall address this problem. 
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We consider the transformation 
 

Consider the event corresponding to each z. We can find a variable subset 

such that  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 

 

 

 

 

 

 

 

 

 

 
Probability density function of Z = X + Y . 

Consider Figure 2 
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Figure 2 

 
 

We have 

 

 

 

 

 
Therefore, is the colored region in the Figure  
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OPERATIONS ON MULTIPLE RANDOM VARIABLES 

 
Expected Values of Functions of Random Variables 

 
Introduction: 

 

 In this Part of Unit we will see the concepts of expectation such as mean, variance, moments, 

characteristic function, Moment generating function on Multiple Random variables. We are already 

familiar with same operations on Single Random variable. This can be used as basic for our topics 

we are going to see on multiple random variables.  

 

Function of joint random variables: 

 

 If g(x,y) is a function of two random variables X and Y with joint density function fx,y(x,y) then the 

expected value of the function g(x,y) is given as  

        
 

 
 
Similarly, for N Random variables X1, X2, . . . XN With joint density function fx1,x2, . . . Xn(x1,x2, . . . 

xn), the expected value of the function g(x1,x2, . . . xn) is given as 

 

 
 

Properties : 

 

The properties of E(X) for continuous random variables are the same as for discrete ones:  

1. If X and Y are random variables on a sample space Ω 
 then E(X + Y ) = E(X) + E(Y ). (linearity I)  

                    

                        2. If a and b are constants then E(aX + b) = aE(X) + b.
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If is a function of a discrete random variable then 

 

Suppose  is a function of continuous random variables then the 

expected value of is given by 

 

 

 

 

 

 
Thus can be computed without explicitly determining . 

 

We can establish the above result as follows. 

 
Suppose has roots at . Then 

 

 

 
Where 

 

Is the differential region containing The mapping is illustrated in Figure 1 

for . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 
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Note that 

 

 

 

 

 

 

 

As is varied over the entire axis, the corresponding (non-overlapping) differential regions 

in  plane cover the entire plane. 

 

 

 

Thus, 

 

 

 

 

If is a function of discrete random variables , we can similarly show that 

 

 

 
Example 1 The joint pdf of two random variables is given by 
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Find the joint expectation of 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Example 2 If 
 

 

 

Proof: 

 

 

 

 

 

 

 

 

 

 
Thus, expectation is a linear operator. 

 

Example 3 

 
Consider the discrete random variables discussed in Example 4 in lecture 18.The 

joint probability mass function of the random variables are tabulated in Table . Find the joint 

expectation of . 
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Remark 

 

(1) We have earlier shown that expectation is a linear operator. We can generally write 

 

 

 

Thus 

(2) If are independent random variables and ,then 

 

 

 

 

 

 

 

 

 

 

Joint Moments of Random Variables 

 
Just like the moments of a random variable provide a summary description of the random 

variable, so also the joint moments provide summary description of two random variables. For 

two continuous random variables , the joint moment of order is defined as 

 

 

 

 
And the joint central moment of order is defined as 
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where and 
 

Remark 

(1) If are discrete random variables, the joint expectation of order and is 

defined as 

 

 

 

 

 

(2) If  and , we have the second-order moment of the random variables 

given by 

 

 

 

 
 

(3) If are independent, 
 

Covariance of two random variables 

 
The covariance of two random variables is defined as 

 

 

 

Cov(X, Y) is also denoted as . 

Expanding the right-hand side, we get 

 

 

 

 

 

 

The ratio is called the correlation coefficient. 
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If then are called positively correlated. 

If then are called negatively correlated 

If then are uncorrelated. 

We will also show that To establish the relation, we prove the following result: 

 
For two random variables 

Proof: 

 
Consider the random variable 

 

 
 

. 

 
Non-negativity of the left-hand side implies that its minimum also must be nonnegative. 

For the minimum value, 

 

so the corresponding minimum is 

 

 

 

 

 

 

 
Since the minimum is nonnegative, 

 

 

 

 

 

 
Now 
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Thus 

 

Uncorrelated random variables 

 
Two random variables are called uncorrelated if 

 

 

 

 

 
 

Recall that if are independent random variables, then 
 

 
 

 

 

 

 

 
 

then 

 
Thus two independent random variables are always uncorrelated. 

 
Note that independence implies uncorrelated. But uncorrelated generally does not imply 

independence (except for jointly Gaussian random variables). 

 

Joint Characteristic Functions of Two Random  Variables 

 
The joint characteristic function of two random variables X and Y is defined by 

 

 
If and are jointly continuous random variables, then 
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Note that  is same as the two-dimensional Fourier transform with the basis function 

instead of 

 
is related to the joint characteristic function by the Fourier inversion formula 

 

 

 

If and are discrete random variables, we can define the joint characteristic function in terms 

of the joint probability mass function as follows: 

 

 

 

 

 

 

 

Properties of the Joint Characteristic Function 

 
The joint characteristic function has properties similar to the properties of the chacteristic 

function of a single random variable. We can easily establish the following properties: 

 
1. 

2. 

3. If and are independent random variables, then 

 

 

 

 

 

 

 
4. We have, 
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Hence, 

 

 

 

 

 

 

 

 

 

 

In general, the order joint moment is given by 

 

 

 

 
 

Example 2 The joint characteristic function of the jointly Gaussian  random variables and 

with the joint pdf 

 

 

 

 

 

 
Let us recall the characteristic function of a Gaussian random variable 
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If and is jointly Gaussian, 

 

 

 

 

 

we can similarly show that 

 

 

 

 

 
We can use the joint characteristic functions to simplify the probabilistic analysis as illustrated 

on next page: 

 
 

Jointly Gaussian Random Variables 

 
Many practically occurring random variables are modeled as jointly Gaussian random variables. 
For example, noise samples at different instants in the communication system are modeled as 
jointly Gaussian random variables. 

 
Two random variables are called jointly Gaussian if their joint probability density 
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The joint pdf is determined by 5 parameters 

 
 means 

 variances 

 correlation coefficient 
 

We denote the jointly Gaussian random variables and with these parameters as 

 

 

The joint pdf has a bell shape centered at as shown in the Figure 1 below. The 

variances determine the spread of the pdf surface and determines the orientation 

of the surface in the  plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Jointly Gaussian PDF surface 

 

 

Properties of jointly Gaussian random variables 

 
(1) If and are jointly Gaussian, then and are both Gaussian. 

 

107



 
 

 
 

We have 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Similarly 

 

 

 
 

(2) The converse of the above result is not true. If each of and is Gaussian, and are 

not necessarily jointly Gaussian. Suppose 
 

 

 
 

 

 

in this example is non-Gaussian and qualifies to be a joint pdf. Because, 

 

And 
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The marginal density is given by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Similarly, 

 
Thus and are both Gaussian, but not jointly Gaussian. 

 
(3) If and are jointly Gaussian, then for any constants and ,the random variable 

given by   is Gaussian with mean and variance 

 
(4) Two jointly Gaussian RVs and   are independent if and only if and are 

uncorrelated .Observe that if  and are uncorrelated, then 
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Example 1 Suppose X and Y are two jointly-Gaussian 0-mean random variables with variances 

of 1 and 4 respectively and a covariance of 1. Find the joint PDF 

 

 
 

 

 

 

 

 

 

 

 

 

We have 

 
 

Example 2 Linear transformation of two random variables 

 
Suppose then 

 

 

 
If and are jointly Gaussian, then 

 

 

 

 

 
 

Which is the characteristic function of a Gaussian random variable 

with mean and variance 
 

thus the linear transformation of two Gaussian random variables is a Gaussian random 
variable
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UNIT IV 

Stochastic Processes-Temporal Characteristics 

 
 The Stochastic process Concept 

 Classification of Processes, Deterministic and Nondeterministic Processes 

 Distribution and Density Functions 

 Statistical Independence 

 Concept of Stationarity: First-Order Stationary Processes, Second-Order and Wide-Sense 
Stationarity, Nth-Order and Strict-Sense Stationarity 

 Time Averages and Ergodicity 

 Mean-Ergodic Processes 

 Correlation-Ergodic Processes 

 Autocorrelation Function and Its Properties 

 Cross-Correlation Function and Its Properties 

 Covariance Functions and its properties 

 

 
Linear system Response: 

 

 Mean 

 Mean-squared value 

 Autocorrelation 

 Cross-Correlation Functions 
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Stochastic process Concept: 

The random processes are also called as stochastic processes which deal with 

randomly varying time wave forms such as any message signals and noise. They are 

described statistically since the complete knowledge about their origin is not known. So 

statistical measures are used. Probability distribution and probability density functions give 

the complete statistical characteristics of random signals. A random process is a function of 

both sample space and time variables. And can be represented as {X x(s,t)}. 

Deterministic and Non-deterministic processes: In general a random process may be 

deterministic or non deterministic. A process is called as deterministic random process if 

future values of any sample function can be predicted from its past values. For example, X(t) 

= A sin (ω0t+ϴ), where the parameters A, ω0 and ϴ may be random variables, is deterministic 

random process because the future values of the sample function can be detected from its 

known shape. If future values of a sample function cannot be detected from observed past 

values, the process is called non-deterministic process. 

Classification of random process: Random processes are mainly classified into four types 

based on the time and random variable X as follows. 

1. Continuous Random Process: A random process is said to be continuous if both the 

random variable X and time t are continuous. The below figure shows a continuous 

random process. The fluctuations of noise voltage in any network is a continuous 

random process. 

 

 

 
2. Discrete Random Process: In discrete random process, the random variable X has  

only discrete values while time, t is continuous. The below figure shows a discrete 

random process. A digital encoded signal has only two discrete values a positive level 

and a negative level but time is continuous. So it is a discrete random process. 
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3. Continuous Random Sequence: A random process for which the random variable X is 

continuous but t has discrete values is called continuous random sequence. A 

continuous random signal is defined only at discrete (sample) time intervals. It is also 

called as a discrete time random process and can be represented as a set of random 

variables {X(t)} for samples tk, k=0, 1, 2,…. 

 
 

 

4. Discrete Random Sequence: In discrete random sequence both random variable X and 

time t are discrete. It can be obtained by sampling and quantizing a random signal. 

This is called the random process and is mostly used in digital signal processing 

applications. The amplitude of the sequence can be quantized into two levels or multi 

levels as shown in below figure s (d) and (e). 
 

 
 

Joint distribution functions of random process: Consider a random process X(t). For a 

single random variable at time t1, X1=X(t1), The cumulative distribution function is defined as 

FX(x1;t1) = P {(X(t1) x1} where x1 is any real number. The function FX(x1;t1) is known as the 

first order distribution function of X(t). For two random variables at time instants t1 and t2 

X(t1) = X1 and X(t2) = X2, the joint distribution is called the second order joint distribution 

function of the random process X(t) and is given by 

FX(x1, x2 ; t1, t2) = P {(X(t1) x1, X(t2) x2}. In general for N random variables at N time  

intervals X(ti) = Xi i=1,2,…N, the Nth order joint distribution function of X(t) is defined as 

FX(x1, x2…… xN ; t1, t2,….. tN) = P {(X(t1) x1, X(t2) x2,…. X(tN) xN}. 

Joint density functions of random process:: Joint density functions of a random process 

can be obtained from the derivatives of the distribution functions. 
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1. First order density function:  

 
    

 

                                                 
 
          

2. second order density function 

 

                   
 

3. Nth order density function: 

 
 

 Independent random processes: Consider a random process X(t). Let X(ti) = xi, i= 

1,2,…N be N Random variables defined at time constants t1,t2, … t N with density functions 

fX(x1;t1), fX(x2;t2), … fX(xN ; tN). If the random process X(t) is statistically independent, then 

the Nth order joint density function is equal to the product of individual joint functions of X(t) 

i.e. 

fX(x1, x2…… xN ; t1, t2,….. tN) = fX(x1;t1) fX(x2;t2). fX(xN ; tN). Similarly the joint distribution 

will be the product of the individual distribution functions. 
 

Statistical properties of Random Processes: The following are the statistical properties of 

random processes. 

1. Mean: The mean value of a random process X(t) is equal to the expected value of the 

                               random process i.e 

𝑋(𝑡)̅̅ ̅̅ ̅̅ = 𝐸[𝑋(𝑡)] = ∫ 𝑥𝑓𝑋

∞

−∞

(𝑥; 𝑡)𝑑𝑥
 

2. Autocorrelation: Consider random process X(t). Let X1 and X2 be two random 

variables defined at times t1 and t2 respectively with joint density function 

fX(x1, x2 ; t1, t2). The correlation of X1 and X2, E[X1 X2] = E[X(t1) X(t2)] is called the 

autocorrelation function of the random process X(t) defined as 

RXX(t1,t2) = E[X1 X2] = E[X(t1) X(t2)] or 
 

                        

3. Cross correlation: Consider two random processes X(t) and Y(t) defined with 

random variables X and Y at time instants t1 and t2 respectively. The joint density 

function is fxy(x,y ; t1,t2).Then the correlation of X and Y, E[XY] = E[X(t1) Y(t2)] is 

called the cross correlation function of the random processes X(t) and Y(t) which is 

defined as 

RXY(t1,t2) = E[X Y] = E[X(t1) Y(t2)] or 

                                  114
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Stationary Processes: A random process is said to be stationary if all its statistical properties 

such as mean, moments, variances etc… do not change with time. The stationarity which 

depends on the density functions has different levels or orders. 

1. First order stationary process: A random process is said to be stationary to order one or 

first order stationary if its first order density function does not change with time or shift in 

time value. If X(t) is a first order stationary process then 

                                             fX(x1;t1) = fX(x1;t1+∆t) for any time t1. 

              Where ∆t is shift in time value. Therefore the condition for a process to be a first order   

stationary random process is that its mean value must be constant at any time instant. i.e.  

𝐸[𝑋(𝑡)] = 𝑋̅ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2. Second order stationary process: A random process is said to be stationary to order two 

or second order stationary if its second order joint density function does not change with 

time or shift in time value i.e. fX(x1, x2 ; t1, t2) = fX(x1, x2;t1+∆t, t2+∆t) for all t1,t2 and ∆t. It is 

a function of time difference (t2, t1) and not absolute time t. Note that a second order 

stationary process is also a first order stationary process. The condition for a process to be a 

second order stationary is that its autocorrelation should depend only on time differences 

and not on absolute time. i.e. If 

RXX(t1,t2) = E[X(t1) X(t2)] is autocorrelation function and τ =t2 –t1 then 

RXX(t1,t1+ τ) = E[X(t1) X(t1+ τ)] = RXX(τ) . RXX(τ) should be independent of time t. 

 

3. Wide sense stationary (WSS) process: If a random process X(t) is a second order 

stationary process, then it is called a wide sense stationary (WSS) or a weak sense 

stationary process. However the converse is not true.  

      The conditions for a wide sense stat ionary process are  

                   1. 𝐸[𝑋(𝑡)] = 𝑋̅ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

                  2.  E[X(t)X(t+τ)]  =  RXX(τ)  is independent of absolute time t. 

Joint wide sense stationary process: Consider two random processes X(t) and Y(t). If they are 

jointly WSS, then the cross correlation function of X(t) and Y(t) is a function of time difference τ 

=t2 –t1only and not absolute time. i.e. RXY(t1,t2) = E[X(t1) Y(t2)] . If τ =t2 –t1 then 

                            RXY(t,t+ τ) = E[X(t) Y(t+ τ)] = RXY(τ). 

 Therefore the conditions for a process to be joint wide sense stationary are  

                 1. 𝐸[𝑋(𝑡)] = 𝑋̅ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

                2. 𝐸[𝑌(𝑡)] = 𝑌̅ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

                3. E[X(t) Y(t+ τ)] = RXY(τ)  is independent of time t. 
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∫ 

   

   

   

 

 Strict sense stationary (SSS) processes: A random process X(t) is said to be strict Sense 

stationary if its Nth order joint density function does not change with time or shift in time 

value. i.e.  

fX(x1, x2…… xN ; t1, t2,….. tN) = fX(x1, x2…… xN ; t1+∆t, t2+∆t, . . . tN+∆t) for all t1, t2 . . . tN and ∆t.  

A process that is stationary to all orders n=1,2,. . . N is called strict sense stationary process. Note 

that SSS process is also a WSS process. But the reverse is not true. 

Time Average Function: Consider a random process X(t). Let x(t) be a sample function 

which exists for all time at a fixed value in the given sample space S. The average value of 

x(t) taken over all times is called the time average of x(t). It is also called mean value of 

x(t). It can be expressed as   

 

𝑥̅ = 𝐴[𝑋(𝑡)] = lim
𝑇→∞

1

2𝑇
∫ 𝑥(𝑡)𝑑𝑡

𝑇

−𝑇

 

Time autocorrelation function: Consider a random process X(t). The time average of the 

product X(t) and X(t+ τ) is called time average autocorrelation function of x(t) and is denoted 

RXX(τ) = E[X(t) X(t+ τ)] = lim
𝑇→∞

1

2𝑇
∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡

𝑇

−𝑇
 

2 

 
Time mean square function: If τ = 0, the time average of x (t) is called time mean square 

value of x(t) defined as  

       𝐴[𝑋2(𝑡)] = lim
𝑇→∞

1

2𝑇
∫ 𝑥2(𝑡)𝑑𝑡

𝑇

−𝑇
 . 

 

Time cross correlation function: Let X(t) and Y(t) be two random processes with sample 

functions x(t) and y(t) respectively. The time average of the product of x(t) y(t+ τ) is called time 

cross correlation function of x(t) and y(t). Denoted as 

𝑅𝑋𝑌(𝜏) = lim
𝑇→∞

1

2𝑇
∫ 𝑥(𝑡)𝑦(𝑡 + 𝜏)𝑑𝑡

𝑇

−𝑇

 

116



 
 

Probability Theory and Stochastic Processes (13A04304) www.raveendraforstudentsinfo.in 
 

 

Ergodic Theorem and Ergodic Process: The Ergodic theorem states that for any random 
process X(t), all time averages of sample functions of x(t) are equal to the corresponding 
statistical or ensemble averages of X(t). Random processes that satisfy the Ergodic theorem 

are called Ergodic processes. 

 
Joint Ergodic Process: Let X(t) and Y(t) be two random processes with sample functions 

x(t) and y(t) respectively. The two random processes are said to be jointly Ergodic if they are 

individually Ergodic and their time cross correlation functions are equal to their respective 

statistical cross correlation functions. i.e.  

  
   and Ryy(τ) = RYY(τ). 

 
Mean Ergodic Random Process: A random process X(t) is said to be mean Ergodic if time 

average of any sample function x(t) is equal to its statistical average,  ̅ which is constant and 
the probability of all other sample functions is equal to one. i.e.  

𝐸[𝑋(𝑡)] = 𝑋̅ = 𝐴[𝑋(𝑡)] = 𝑥̅ 

    with probability one for all x(t). 
Autocorrelation Ergodic Process: A stationary random process X(t) is said to be 

Autocorrelation Ergodic if and only if the time autocorrelation function of any sample 

function x(t) is equal to the statistical autocorrelation function of X(t). i.e. A[x(t) x(t+τ)] = 

E[X(t) X(t+τ)] or Rxx(τ) = RXX(τ). 
 

Cross Correlation Ergodic Process: Two stationary random processes X(t) and Y(t) are 

said to be cross correlation Ergodic if and only if its time cross correlation function of sample 

functions x(t) and y(t) is equal to the statistical cross correlation function of X(t) and Y(t). i.e. 

A[x(t) y(t+τ)] = E[X(t) Y(t+τ)] or Rxy(τ) = RXY(τ). 

 

Properties of Autocorrelation function: Consider that a random process X(t) is at least 

WSS and is a function of time difference τ = t2-t1. Then the following are the properties of the 

autocorrelation function of X(t). 

 

1. Mean square value of X(t) is E[X2(t)] = RXX(0). It is equal to the power (average) of the 

process, X(t). 

Proof: We know that for X(t), RXX(τ) = E[X(t) X(t+ τ)] . If τ = 0, then RXX(0) = E[X(t) 

X(t)] = E[X2(t)] hence proved. 

2. Autocorrelation function is maximum at the origin i.e. 

                     
Proof: Consider two random variables X(t1) and X(t2) of X(t) defined at time intervals 

t1 and t2 respectively. Consider a positive quantity [X(t1)± X(t2)]
2≥0 

Taking Expectation on both sides, we get E{[X(t1)± X(t2)]
2}≥0 

E[X2(t1)+ X2(t2)± 2X(t1) X(t2)] ≥0 

E[X2(t1)]+ E[X2(t2) 2E[X(t1) X(t2)] 0 

RXX(0)+ RXX(0) ±2 RXX(t1,t2)≥ 0 [Since E[X2(t)] = RXX(0)] 
Given X(t) is WSS and τ = t2-t1. 

Therefore 2 RXX(0)± 2 RXX(τ)≥ 0 

RXX(0)± RXX(τ)≥ 0 or
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3. RXX(τ) is an even function of τ i.e. RXX(-τ) = RXX(τ). 

Proof: We know that RXX(τ) = E[X(t) X(t+ τ)] 

Let τ = - τ then 

RXX(-τ) = E[X(t) X(t- τ)] 

Let u=t- τ or t= u+ τ 

Therefore RXX(-τ) = E[X(u+ τ) X(u)] = E[X(u) X(u+ τ)] 

 
 RXX(-τ) = RXX(τ) hence proved. 
 

4. If a random process X(t) has a non zero mean value, E[X(t)] ≠0 and Ergodic with no 
periodic components, then  

            

 Proof: Consider a random variable X(t)with random variables X(t1) and X(t2). Given the         

mean value is 
𝐸[𝑋(𝑡)] = 𝑋̅ ≠ 0 

               We know that 
RXX(τ) = E[X(t)X(t+τ)] = E[X(t1) X(t2)]. Since the process has no periodic 

components, as|τ | tends to ∞, the random variable becomes independent, i.e. 

                    

     Since X(t) is Ergodic 𝐸[𝑋(𝑡1)] = 𝐸[(𝑋(𝑡2)] = 𝑋̅  so it satisfies above property.          

5. If X(t) is periodic then its autocorrelation function is also periodic.  

    Proof: Consider a Random process X(t) which is periodic with period T0 Then                    

                X(t) = X(t± T0) or 

X(t+τ ) = X(t +τ ± T0). Now we have RXX(τ) = E[X(t)X(t+τ)] then 

RXX(τ ±T0) = E[X(t)X(t+τ±T0)] 

Given X(t) is WSS, RXX(τ ±T0) = E[X(t)X(t+τ)] 

RXX(τ± T0) = RXX(τ) 

Therefore RXX(τ) is periodic hence proved. 
 

6. The autocorrelation function of random process RXX(τ) cannot have any arbitrary shape.  

Proof:  

The autocorrelation function RXX(τ) is an even function of and has maximum value at the 

origin. Hence the autocorrelation function cannot have an arbitrary shape hence proved. 
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7. If a random process X(t) with zero mean has the DC component A as Y(t) =A + X(t), Then 

RYY(τ) = A2+ RXX(τ). 

Proof: Given a random process Y(t) =A + X(t). 

We know that RYY(τ) = E[Y(t)Y(t+τ)] =E[(A + X(t)) (A + X(t+ τ))] 

= E[(A2 + AX(t) + AX(t+ τ)+ X(t) X(t+ τ)] 

= E[(A2] + AE[X(t)] + E[AX(t+ τ)]+ E[X(t) X(t+ τ)] 
=A2+0+0+ RXX(τ). 
Therefore RYY(τ) = A2+ RXX(τ) hence proved. 

 

8. If a random process Z(t) is sum of two random processes X(t) and Y(t) i.e, 

Z(t) = X(t) + Y(t). Then RZZ(τ) = RXX(τ)+ RXY(τ)+ RYX(τ)+ RYY(τ) Proof: 

Given Z(t) = X(t) + Y(t). 

We know that RZZ(τ) = E[Z(t)Z(t+τ)] 

= E[(X(t)+Y(t)) (X(t+τ)Y(t+τ))] 

= E[(X(t) X(t+τ)+ X(t) Y(t+τ) +Y(t) X(t+τ) +Y(t) Y(t+τ))] 

= E[(X(t) X(t+τ)]+ E[X(t) Y(t+τ)] +E[Y(t) X(t+τ)] +E[Y(t) Y(t+τ))] 

Therefore RZZ(τ) = RXX(τ)+ RXY(τ)+ RYX(τ)+ RYY(τ) hence proved. 

 

Properties of Cross Correlation Function: Consider two random processes X(t) and Y(t) 

are at least jointly WSS. And the cross correlation function is a function of the time 

difference τ = t2-t1. Then the following are the properties of cross correlation function. 

 

i) RXY(τ) = RYX(-τ) is a Symmetrical property. 

Proof: We know that RXY(τ) = E[X(t) Y(t+ τ)] 

also RYX(τ) = E[Y(t) X(t+ τ)] 

Let τ = - τ then 
RYX(-τ) = E[Y(t) X(t- τ)] 
Let u=t- τ or t= u+ τ. then 

RYX(-τ) = E[Y(u+ τ) X(u)] = E[X(u) Y(u+ τ)] 

               Therefore RYX(-τ) = RXY(τ) hence proved. 

 

     ( ) ( ) (0) (0)XY X Yii R R R   

            We have 

              

2 2

2 2

( ) ( ) ( )

              ( ) ( )   using Cauch-Schwarts Inequality

              (0) (0)

( ) (0) (0)

XY

X Y

XY X Y

R EX t Y t

EX t EY t

R R

R R R

 





 

 



 

 

     Further,  

 
1

(0) (0) (0) (0)    Geometric mean Arithmatic mean
2

X Y X YR R R R    

 
1

( ) (0) (0) (0) (0)
2

XY X Y X YR R R R R     

Hence the absolute value of the cross correlation function is always less than or equal to the 

geometrical mean of the autocorrelation functions. 
 

 (iii) If X (t) and Y (t) are uncorrelated, then ( ) ( ) ( )XY X YR EX t EY t       

 

(iv) If X (t) and Y (t) is orthogonal process,    ( ) 0XYR EX t Y t     
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Example Suppose 
0 1( ) cos( )X t A w t    and 

0 2( ) sin( )Y t A w t   where  
0 and A w  are constants 

and 
1  and  

2  are independent random variables each   uniformly distributed between 0 and 2 .  Then  

 

1 2 1 2

0 1 1 0 2

0 1 1 0 2

( , ) ( ) ( )

                 = cos( ) sin( )

                 = cos( ) sin( )

                =0 0 0

XYR t t EX t X t

EA w t A w t

EA w t EA w t

 

 



 

 

 

 

Therefore, random processes { ( ), }X t t   and  { ( ), }Y t t  are orthogonal. 

 

Covariance functions for random processes: 

 

Auto Covariance function: 

 Consider two random processes X(t) and X(t+ τ) at two time intervals t and t+ τ. The auto 

covariance function can be expressed as 

 

CXX(t, t+τ) = E[(X(t)-E[X(t)]) ((X(t+τ) – E[X(t+τ)])] or 

CXX(t, t+τ) = RXX(t, t+τ) - E[(X(t)] E[X(t+τ)] 

Properties: 

1.  If X(t) is WSS, then 𝐶𝑋𝑋(𝜏) = 𝑅𝑋𝑋(𝜏) − 𝑋̅2 since E[X(t)]=E[X(t+τ)]= 𝑋̅  

 

2. 𝐶𝑋𝑋(0) = 𝑅𝑋𝑋(0) − 𝑋̅2 = 𝐸[𝑋2(𝑡)] − {𝐸[𝑋(𝑡)]}2 = 𝜎𝑋
2     

Therefore at τ = 0, the auto covariance function becomes the Variance of the random process. 

3. The autocorrelation coefficient of the random process, X(t) is defined  as  

Cross Covariance Function: 

 If two random processes X(t) and Y(t) have random variables X(t) and Y(t+ τ), then the cross 

covariance function can be defined as 

 

CXY(t, t+τ) = E[(X(t)-E[X(t)]) ((Y(t+τ) – E[Y(t+τ)])] or 

 

CXY(t, t+τ) = RXY(t, t+τ) - E[(X(t) E[Y(t+τ)].  

 

 

 

 

 

1  and 2  are independent 
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Properties: 

1. If X(t) and Y(t) are jointly WSS, then  
𝐶𝑋𝑌(𝜏) = 𝑅𝑋𝑌(𝜏) − 𝑋̅𝑌̅ 

 

2. If X(t) and Y(t) are Uncorrelated then  CXY(t, t+τ) =0. 

3. The cross correlation coefficient of random processes X(t) and Y(t) is defined as
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Response of Linear time-invariant system to WSS input 

 

In many applications, physical systems are modeled as linear time invariant (LTI) systems. The 
dynamic behavior of an LTI system to deterministic inputs is described by linear differential equations. 

We are familiar with time and transform domain (such as Laplace transform and Fourier transform) 

techniques to solve these equations. In this lecture, we develop the technique to analyze the response of 
an LTI system to WSS random process. 

 

The purpose of this study is two-folds: 

 
(1) Analysis of the response of a system 

(2) Finding an LTI system that can optionally estimate an unobserved random process from an 

observed process. The observed random process is statistically related to the unobserved 
random process. For example, we may have to find LTI system (also called a filter) to estimate 

the signal from the noisy observations.  

 

Basics of Linear Time Invariant Systems: 

 

A system is modeled by a transformation T that maps an input signal ( )x t  to an output signal y(t). We 

can thus write, 

 

  ( ) ( )y t T x t  

 

 
Linear system 
The system is called linear if superposition applies: the weighted sum of inputs results in the 

weighted sum of the corresponding outputs. Thus for a linear system 

 

        1 1 2 2 1 1 2 2T a x t a x t a T x t a T x t              

Example : Consider the output of a linear differentiator, given by 

                 
( )

( )
d x t

y t
dx

  

Then,       1 1 2 2( ) ( )
d

a x t a x t
dt

  

          1 1 2 2( ) ( )
d d

a x t a x t
dt dt

   

Hence the linear differentiator is a linear system. 
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Linear time-invariant system 

 

Consider a linear system with y(t)  = T x(t). The system is called time-invariant if 

               0 0 0T x t t y t t t     

It is easy to check that that the differentiator in the above example is a linear time-invariant system. 
 

Causal system 

The system is called causal if the output of the system at 0t t  depends only on the present and past 

values of input. Thus for a causal system  

 

    0 0( ),y t T x t t t   

Response of a linear time-invariant system to deterministic input 

A linear system can be characterised by its impulse response ( ) ( )h t T t  where ( )t  is the Dirac 

delta function.  

 
 

  

 
Recall that any function x(t) can be represented in terms of the Dirac delta function as follows 

           ( ) ( )x t x t s ds 




   

If  x(t) is input to the linear system    y(t)  = T x(t),  then  

          

 

   

 

( ) ( )

( )  Using the linearity property 

( ) ,

y t T x s t s ds

x s T t s ds

x s h t s ds

















 

 









 

 

Where    ,h t s T t s   is the response at time t due to the shifted impulse  t s  . 

 
If the system is time invariant, 

             ,h t s h t s   

Therefore for a linear time invariant system,  

             ( ) ( ) * ( )y t x s h t s ds x t h t





    

where * denotes the convolution operation. 

 

Thus for a LTI System, 

 

              ( ) ( ) * ( ) ( ) * ( )y t x t h t h t x t   

  

           

 

 

)(th  LTI  

system 

 

)(t

x(n) 
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  Taking the Fourier transform, we get 
 

         

     

   where ( ) is thefrequency response of the systemj t

Y H X

H FT h t h t e dt

  










  
 

 

 

Response of an LTI System to WSS input 

 

Consider an LTI system with impulse response h(t). Suppose { ( )} X t is a WSS process input to the 

system. The output { ( )} Y t  of the system is given by  

               Y t h s X t s ds h t s X s ds

 

 

      

where we have assumed that the integrals exist in the mean square (m.s.) sense.  

 

Mean and autocorrelation of the output process   Y t  

 
The mean of the output process is given by, 

 

     

   

 

 

 0

X

X

X

EY t E h s X t s ds

h s EX t s ds

h s ds

h s ds

H























 

 















 

 

where (0)H  is the frequency response ( )H  at 0 frequency ( 0  ) given by 

( )y t

 

( )x t  LTI System 

( )h t  

( )Y   ( )X   LTI System 

( )H   
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   
0

0

( ) j tH h t e dt h t dt






 





 

    

 

Therefore, the mean of the output process    Y t  is a constant 

 

Cross correlation function of input and output of LTI system: 

 

The Cross correlation of the input X(t) and the out put Y(t) is given by 

            

                      E X t Y t E X t h s X t s ds 




     

                                           h s E X t X t s ds




    

                                         Xh s R s ds




   

                                          [ Put  ]Xh u R u du s u




      

                                         * Xh R     

 

 

              

     

       

   

*

*

*

XY X

YX XY X

X

R h R

also R R h R

h R

  

   

 

  

   



 

Thus we see that  XYR   is a function of lag  only. Therefore,  X t  and  Y t are jointly wide-sense 

stationary. 

 

 
The autocorrelation function of the output process Y(t) is given by, 

 

            

        

   

( )

( )

E Y t Y t E X t s dsY th s

h s E X t s Y t ds

 











    

  





 

                                          
   

   ( ) * ( ) * ( ) *

XY

XY X

h s R s ds

h R h h R



    





 

  


 

 

Thus the autocorrelation of the output process   Y t depends on the time-lag  , i.e., 

     YEY t Y t R   . 

Thus 

       * *Y XR R h h      
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The above analysis indicates that for an LTI system with WSS input 
(1) the output is WSS  and 

(2) the input and output are jointly WSS. 

 

The average  power of the output process   Y t is given by 

 

     
 

     

0

    0 * 0 * 0

Y Y

X

P R

R h h




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UNIT V 

Stochastic Processes-Spectral Characteristics 

 
 The Power Spectrum and its Properties 

 Relationship between Power Spectrum and Autocorrelation Function 

 The Cross-Power Density Spectrum and Properties 

 Relationship between Cross-Power Spectrum and Cross-Correlation Function. 

 

Spectral characteristics of system response: 

 

 Power density spectrum of response 

 Cross power spectral density of input and output of a linear system 
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Introduction: 

In this unit we will study the characteristics of random processes regarding correlation and 

covariance functions which are defined in time domain. This unit explores the important 

concept of characterizing random processes in the frequency domain. These characteristics 

are called spectral characteristics. All the concepts in this unit can be easily learnt from the 

theory of Fourier transforms. 

Consider a random process X (t). The amplitude of the random process, when it varies 

randomly with time, does not satisfy Dirichlet’s conditions. Therefore it is not possible to 

apply the Fourier transform directly on the random process for a frequency domain analysis. 

Thus the autocorrelation function of a WSS random process is used to study spectral 

characteristics such as power density spectrum or power spectral density (psd). 

Power Density Spectrum: The power spectrum of a WSS random process X (t) is defined as 

the Fourier transform of the autocorrelation function RXX (τ) of X (t). It can be expressed as    

       

𝑆𝑋𝑋(ω) = ∫ RXX

∞

−∞

(τ)e−jωτdτ 

     We can obtain the auto correlation function from power spectral density by taking the inverse    

       
      Fourier transform i.e 

  𝑅𝑋𝑋(τ) =
1

2π
∫ SXX

∞

−∞

(ω)ejωτdω 

 
 

Therefore, the power density spectrum SXX(ω) and the autocorrelation function RXX (τ) are 

Fourier transform pairs. 

Definition of Power Spectral Density of a WSS Process 

Let us define 

  

     

0      otherwise

       ( ) ( )
2

TX (t)  X(t) -T  t  T

                 

t
X t rect

T

  





   

where ( )
2

t
rect

T
 is the unity-amplitude rectangular pulse of width 2T centering the origin. As 

)( , tXt T  will represent the random process ).(tX  

Define the mean-square integral  

(

T

j t

T T

T

FTX ) X (t)e dt 



    

Applying the Pareseval’s theorem we find the energy of the signal   

22

T

T T

T

X (t)dt FTX ( ) d 


 

    . 

Therefore, the power associated with ( )TX t   is 
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2

21 1

2 2

T

T T

T

X (t)dt FTX ( ) d
T T

 


 

   and 

The average power is given by 

22

21 1

2 2 2

T
T

T T

T

FTX ( )
E X (t)dt E FTX ( ) d E d

T T T


  

 

  

     

where  

2
( )

2

TE FTX

T


 is the contribution to the average power at frequency   and represents the power 

spectral density for ( ).TX t   As ,T   the left-hand side in the above expression  represents the average 

power of ( ).X t  Therefore, the PSD ( )XS  of the process ( )X t  is defined in the limiting sense by  

                 

2
( )

( ) lim
2

T

X
T

E FTX
S

T





  

 
The power spectral density can also be defined as  

 

        

Where XT(ω) is a Fourier transform of X(t) in interval [-T,T] 

Average power of the random process: The average power PXX of a WSS random process 

X(t) is defined as the time average of its second order moment or autocorrelation function at  

τ =0. 

Mathematically, PXX = A {E[X2(t)]} 

 𝑃𝑋𝑋 = lim
𝑇→∞

1

2𝑇
∫ 𝐸[𝑋2(𝑡)]𝑑𝑡

𝑇

−𝑇
 

 

  𝑃𝑋𝑋=𝑅𝑋𝑌(𝜏) at τ=0 

We know that from the power density spectrum, 

𝑅𝑋𝑋(τ) =
1

2π
∫ SXX

∞

−∞

(ω)ejωτdω 

 
 

𝑎𝑡 𝜏 = 0    𝑃𝑋𝑋 = 𝑅𝑋𝑌(0) =
1

2π
∫ SXX

∞

−∞

(ω)dω 

Therefore average power of X(t) is 

    𝑃𝑋𝑋 =
1

2π
∫ SXX

∞

−∞

(ω)dω 
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Properties of power density spectrum: The properties of the power density spectrum 

SXX(ω) for a WSS random process X(t) are given as 

 

1. The average power of a random process ( )X t  is 

       

2
XR (0)

1
             ( )

2
X

  EX (t)

S dw








 
  

The average power in the band 1 2[ ,  ]   is 
2

1

2 ( )XS d




   

2. If  ( )X t  is real, )(R  X    is a  real and  even function of .   Therefore,  

 

0

( ) ( )

( )(cos sin )

( )cos

2 ( )cos

j

X X

X

X

X

S R e d

R j d

R d

R d

  

   

  

  



















 













 

          

         

         

 

Thus ( )
X

S    is a real and even function of .  

3. From the definition   

2
( )

( ) lim
2

T
X T

E X
S w

T


 is always non-negative. Thus  ( ) 0.XS    

4. If   ( )X t has a periodic component, )(R  X  is periodic and so ( )
X

S  will have impulses. 

 
5. If X(t) is a WSS random process with psd SXX(ω), then the psd of the derivative of X(t) is 

equal to ω2 times the psd SXX(ω). That is  
𝑆𝑋̇𝑋̇(𝜔) = 𝜔2𝑆𝑋𝑋(𝜔) 

 
 

Average Power in 

the frequency band 

1 2[ ,  ]   
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Remark 

a. The function ( )XS   is the PSD of a WSS process  ( )X t if and only if  ( )XS  is 

a non-negative,  real and even function of   and ( )XS 




    

b. The above condition on ( )XS   also ensures that the corresponding 

autocorrelation function )(R  X   is non-negative definite. Thus the non-negative 

definite property of an autocorrelation function can be tested through its power 

spectrum. 

c. Recall that a periodic function has the Fourier series expansion. If  ( )X t is M.S. 

periodic we can have an equivalent Fourier series expansion  ( ) .X t  
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Relation between the autocorrelation function and PSD: Wiener-Khinchin-Einstein theorem: 

Statement: 

It states that PSD and Auto correlation function of a WSS random process form Fourier transform 

pair. i.e 

𝑆𝑋𝑋(ω) = ∫ RXX
∞

−∞
(τ)e−jωτdτ         And 

 

𝑅𝑋𝑋(τ) =
1

2π
∫ SXX

∞

−∞

(ω)ejωτdω 

 

Proof: 

We have 

1 2

1 2

2 *

1 2 1 2

( )

1 2 1 2

| ( ) | ( ) ( )

2 2

1
                  ( ) ( )

2

1
                  ( )

2

T T T

T T

j t j t

T T

T T

T T

j t t

X

T T

FTX FTX FTX
E E

T T

EX t X t e e dt dt
T

R t t e dt dt
T

 



  

 

 

 

 





 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

           

      Note that the above integral is to be performed on a square region bounded by  1t T   and 2 .t T   

Substitute  21 tt  so that   12 tt  is a family of  straight  lines parallel to 1 2 0.t t   The 

differential area in terms of   is given by the shaded area and equal to (2 | |) .T d  The double integral 

is now replaced by a single integral in .  Therefore, 

      

* 2

2

2

2

( ) ( ) 1
  ( ) (2 | |)

2 2

| |
                                  ( ) (1 )

2

T
jT T

X
T

T
j

x
T

FTX X
E R e T d

T T

R e d
T





 
  


 









 

 

 

T  

T  

T  

T  

1t  

2t  

d  

1 2t t    

1 2t t d     

1 2 2t t T   

1 2 2t t T    
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      If  XR ( )  is integrable then  the  right hand integral converges to ( ) j
XR e d 






  as ,T  

            

2
( )

lim ( )
2T

T j
X

E FTX
R e d

T


 








    

As we have noted earlier, the power spectral density 

2
( )

( ) lim
2

T

X
T

E FTX
S

T





 is the contribution to the 

average power at frequency   and is called the power spectral density ( )X t . Thus 

( ) ( ) j

X XS R e d  






        
 

and using the inverse Fourier transform 

1
( ) ( )

2

j

X XR S e dw 






     

 

Example 1 The autocorrelation function of a WSS process ( )X t  is given by 

                 
2( ) 0

b

XR a e b





     

Find the power spectral density of the process. 

( ) ( )

2

0
2 2

0

2 2

22

2 2

j
S R e d

X x

b j
a e e d

j jb ba e e d a e e d

a a

b j b j

a b

b


  

 


   

 






 


  
 



   



 
 




          

          

          

          

 

The autocorrelation function and the PSD are shown in Fig.  
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Example2: Suppose ( ) sin ( )cX t A B t          where A  is a constant bias and ~ [0, 2 ]U   .  

Find  ( )XR   and  ( ).XS  . 

2
2

( )  ( ) ( )

        (   sin  ( ( ) ))(   sin  (  ))

        cos
2

c c

c

xR EX t X t

E A B t A B t

B
A

 

  

 

 

     

 

 

      
2

2 ( )
4

where ( ) is the Dirac Delta function.

X c c

B
S A        

 

     
 

 
Example 3. Find PSD of the amplitude-modulated random-phase sinusoid 

                 ( ) ( ) cos , ~ 0,2cX t M t t U     

where M(t)  is a WSS process independent of .  

 

2

2

B
 

2

2

B
 

2A  

o  
c  

( )XS   

c  
  
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          

   

 
2

( ) ( ) cos ( ) ( ) cos

( ) ( ) cos ( ) cos

                                           ( Using the independence of  ( ) and the  sinusoid)

cos
2

c c

c c

M c

XR E M t t M t

E M t M t E t

M t

A
R

     

    

  

    

    



 

      
      

 

2

4

where is the PSD of M(t)

X M c M c

M

A
S S S

S

    



    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4  The PSD of a noise process is given by 

           
0

2 2

0 Otherwise

N c

N W
S     



 

Find the autocorrelation of the process. 

 

         

2

2

1
( )

2

1
2 cos

2 2

c

c

j

N N

W

W

o

R S e d

N
d







  


 










 

  





   

                        

sin sin
2 2

2

c c
o

W W

N
   

 

    
      

    
 
 
 

 

                        

sin
2 cos

2

2

o
oW

W

N

W



 


  

2
c

W
   

2
c

W
   

2
c

W
   

2
c

W
   o  

c  c  

( )XS   

  

( )MS   

  
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Example 5: The autocorrelation function of a WSS process X (t) is given by 

 
Find PSD of the random process X(t). 
 

Solution: 

 

 
 

Cross power spectral density: 

Consider a random process ( )Z t which is sum of two real jointly WSS random processes . and Y(t)X(t)  

As we have seen earlier, 

     ( ) ( ) ( ) ( ) ( )Z X Y XY YXR R R R R         

If we take the Fourier transform of both sides, 

     ( ) ( ) ( ) ( ( )) ( ( ))Z X Y XY YXS S S FT R FT R         

where (.)FT  stands for the Fourier transform. 

Thus we see that ( )ZS  includes contribution from the Fourier transform of the cross-correlation 

functions  ( ) and ( ).XY YXR R   These Fourier transforms represent cross power spectral densities. 

Definition of Cross Power Spectral Density 

Given two real jointly WSS random processes  and ,X(t) Y(t) the cross power spectral density (CPSD) 

( )XYS   is defined as 

( ) ( )
( ) lim

2

T T
XY

T

FTX FTY
S E

T

 





  

where     ( )  and ( )T TFTX FTY   are the Fourier transform of the truncated processes 

( ) ( )  and ( ) ( )
2 2

T T

t t
X t X(t)rect  Y t Y(t)rect

T T
    respectively and 


 denotes the complex conjugate 

operation. 
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We can similarly define ( )YXS   by 

( ) ( )
( ) lim

2

T T
YX

T

FTY FTX
S E

T

 





  

Proceeding in the same way as the derivation of the Wiener-Khinchin-Einstein theorem for the WSS 

process, it can be shown that   

   ( ) ( ) j
XY XYS R e d  






   

and 

  ( ) ( ) j
YX YXS R e d  






   

The cross-correlation function and the cross-power spectral density form a Fourier transform pair and we 

can write 

   ( ) ( ) j
XY XYR S e d  





   

and 

  ( ) ( ) j
YX YXR S e d  





   

Properties of the CPSD 

The CPSD is a complex function of the frequency .  Some properties of the CPSD of two jointly WSS 

processes  and X(t) Y(t)  are listed below: 

(1)             *( ) ( )XY YXS S   

                       Note that  ( ) ( )XY YXR R    

                         

*

( ) ( )

               ( )

               ( )

                = ( )

j
XY XY

j
YX

j
YX

YX

S R e d

R e d

R e d

S







  

 

 

















  

 

 

 

      (2) Re( ( ))XYS  is an even function of   and Im( ( ))XYS  is an odd function of   

       We have 

                 

( ) ( )(cos sin )

            ( )cos ( )sin )

             Re( ( )) Im( ( ))

where

            Re( ( )) ( )cos  is an even function of  and

       

XY XY

XY XY

XY XY

XY XY

S R j d

R d j R d

S j S

S R d

    

     

 

    





 

 





 

  

 

 

   Im( ( )) ( )sin  is an odd function of  andXY XYS R d    




 
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    (3)  and X(t) Y(t)  are uncorrelated and have constant means, then  

        ( ) ( ) ( )XY YX X YS S        

           Observe that 

    

     ( ) ( ) ( )

                ( ) ( )

                

                

                 ( )

( ) ( ) ( )

XY

X Y

Y X

XY

XY YX X Y

R EX t Y t

EX t EY t

R

S S

 



 

 



     

 

 







  

 

(4)    If  and X(t) Y(t)  are orthogonal, then  

          ( ) ( ) 0XY YXS S    

       If  and X(t) Y(t)  are orthogonal, 

    

     ( ) ( ) ( )

                0

                 ( )

( ) ( ) 0

XY

XY

XY YX

R EX t Y t

R

S S

 



 

 





  

 

(5) The cross power XYP  between  and X(t) Y(t)  is defined by 

         
1

lim ( ) ( )
2

T

XY
T T

P E X t Y t dt
T 

  

Applying Parseval’s theorem, we get 

*

*

1
lim ( ) ( )

2

1
      lim ( ) ( )

2

1 1
      lim ( ) ( )

2 2

( ) ( )1
      lim

2 2

1
      ( )

2

1
      ( )

2

T

XY
T T

T T
T

T T
T

T T

T

XY

XY XY

P E X t Y t dt
T

E X t Y t dt
T

E FTX FTY d
T

EFTX FTY
d

T

S d

P S d

  


 




 


 


 



 



 



































 

 

Similarly, 

  
*

*

1
      ( )

2

1
           ( )

2

           

YX YX

XY

XY

P S d

S d

P

 


 




















 

Example5: Consider the random process ( ) ( ) ( )Z t X t Y t   discussed in the beginning of the lecture. 

Here ( )Z t  is the sum of two  jointly WSS orthogonal random processes  and .X(t) Y(t)      

We have, 

 ( ) ( ) ( ) ( ) ( )Z X Y XY YXR R R R R         
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Taking the Fourier transform of both sides, 

     

( ) ( ) ( ) ( ) ( )

1 1 1 1 1
( ) ( ) ( ) ( ) ( )

2 2 2 2 2

Therefore,

( ) ( ) ( ) ( ) ( )

Z X Y XY YX

Z X Y XY YX

Z X Y XY YX

S S S S S

S d S d S d S d S d

P P P P P

    

         
    

    

    

    

    

   

    

   

 

Remark 

 ( ) ( )XY YXP P   is the additional power contributed by  ( ) and ( )X t Y t to the resulting power 

of ( ) ( )X t Y t  

 If  and X(t) Y(t)     are orthogonal, then 

 

              
( ) ( ) ( ) 0 0

         ( ) ( )

Z X Y

X Y

S S S

S S

  

 

   

 
 

         Consequently 

          ( ) ( ) ( )Z X YP P P     

           Thus in the case of two jointly WSS orthogonal processes, the power of the sum of the processes is 

equal to the sum of respective powers. 

 

Spectral characteristics of system response: 

 
Power spectrum of the output process 

Consider that a random process X (t) is applied on an LTI system having a transfer function H(ω). The 

output response is Y (t). If the power spectrum of the input process is SXX (ω), then the power spectrum of 
the output response is given by   SYY (ω) = SXX (ω)|H(ω)|2. 

 

 Proof: Let RYY(τ)  be the autocorrelation of the output response Y (t). Then the power spectrum of the 
response is the Fourier transform of RYY(τ) . 

       * *Y XR R h h      

Using the property of Fourier transform, we get the power spectral density of the output process given by 
 

       

   

*

2

Y X

X

S S H H

S H

   

 




 

 

Also note that 

     

     

      *

*

XY X

YX X

R h R

and R h R

  

  

 


 

Taking the Fourier transform of  XYR   we get the cross power spectral density  XYS   given by 

 

       

     

     

*

and

XY X

YX X

S H S

S H S

  

  




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Example: 

 

(a) White noise process  X t  with power spectral density 0

2

N
 is input to an ideal low pass filter of 

band-width B. Find the PSD and autocorrelation function of the output process. 

 
 

 
 

The input process  X t  is white noise with power spectral density   0

2
X

N
S   . 

 

The output power spectral density  YS  is given by, 

 

2

N
 

( )H   

B  B    

( )YR   ( )XYR   
( )XR   

( )h   ( )h   

( )YS   ( )XYS 

 
( )XS   

*( )H   ( )H   
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     
2

0

0

1
2

2

Y XS H S

N
B B

N
B B

  







    

   

 

 
 

   

0 0

Inverse Fourier transform of 

1 sin

2 2 2

Y Y

B

j

B

R S

N N B
e d

 




 


 

 
 

 

The output PSD  YS   and the output autocorrelation function  YR   are illustrated in Fig.   below. 

 

 

 
 

Example 2: 

 

A random voltage modeled by a white noise process  X t  with power spectral density 0

2

N
 is input to an 

RC network shown in the fig. 

 

Find (a) output PSD  YS   
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        (b) output auto correlation function  YR   

        (c) average output power  2EY t R  

 

 
 

  
               

The  frequency response of the system is given by 
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(b) Taking inverse Fourier transform 

 

   0

4
RC

Y

N
R e

RC






  

 
(c) Average output power 

     2 00
4

Y

N
EY t R

RC
   

 

 

142



 
 

 

 

PROBABILITY THEORY AND STOCHASTIC PROCESSES 

                                                     Unit wise Important Questions 

UNIT-I 

 

1.  State and Prove Bayes’ theorem. 

2. Differentiate Joint and Conditional Probability 

3. Show that P(AUB)=P(A)+P(B)-P(A∩B) 

4. Define Probability axioms and properties. 

5. Define probability based on Relative frequency and classical definition 

6. Define equally likely events, Exhaustive events and mutually exclusive events and sample 

space. 

7. Define Random variable and explain the classifications of Random variable with example. 

8. Explain about conditional probability and its properties (or) show that conditional probability 

satisfies the axioms of probability.  

9. State and prove the total probability theorem? 

10. Define independent events  and  Show that if A and B are independent, then so the following 

also independent. 

a)A and 𝐵̅̅ b) 𝐴̅ and B c) 𝐴̅ and 𝐵̅̅  

 
Problems: 
 
1. In a box there are 100 resistors having resistance and tolerance values given in table. Let a 

resistor be selected from the box and assume that each resistor has the same likelihood of 

being chosen. Event A: Draw a 47Ω resistor, Event B: Draw a resistor with 5% tolerance, 

Event C: Draw a 100Ω resistor. Find the individual, joint and conditional probabilities. 
 

Resistance 
(Ω) 

Tolerance Total 

5% 10% 

22 10 14 24 

47 28 16 44 

100 24 8 32 

Total 62 38 100 

 

2. Two boxes are selected randomly. The first box contains 2 white balls and 3 black balls. The 

second box contains 3 white and 4 black balls. What is the probability of drawing a white ball. 

b) An aircraft is used to fire at a target. It will be successful if 2 or more bombs hit the target. If 

the aircraft fires 3 bombs and the probability of the bomb hitting the target is 0.4, then what is 

the probability that the target is hit? 

 
3.  An experiment consists of observing the sum of the outcomes when two fair dice are thrown. 

Find the probability that the sum is 7 and find the probability that the sum is greater than 10. 
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4.  In a factory there are 4 machines produce 10%,20%,30%,40% of an items respectively. The 

defective items produced by each machine are 5%,4%,3% and 2% respectively. Now an item is 

selected which is to be defective, what is the probability it being from the 2nd machine. And also 

write the statement of total probability theorem? 

 
5. Determine probabilities of system error and correct system transmission of symbols for an 

elementary binary communication system shown in below figure consisting of a transmitter that 

sends one of two possible symbols (a 1 or a 0) over a channel to a receiver. The channel 

occasionally causes errors to occur so that a ’1’ show up at the receiver as a ’0? and vice versa. 

Assume the symbols ‘1’ and ‘0’ are selected for a transmission as 0.6 and 0.4 respectively. 

 

 
 

 

6. If P(A)=0.4,P(B)=0.7 and P(A∩B)=0.3 find P(A'∩B'). 
7. A pack contains 6 white and 4 green pencils; another pack contains 5 white and 7 green pencils. If 

one pencil is drawn from each pack, find the probability that i) both are white 

ii) One is white and another is green. 

8. Two fair dice are thrown independently. Three events A,B,C are respectively defined as follows: 

i)Odd face with first die  ii) Odd face with second die iii)The sum of two numbers in  the two 

dice is odd. Are the events A, B, C mutually independent or pair wise independent
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UNIT-II 

 

1. Define probability Distribution function and state and prove its properties. 

2. Define probability density function and state and prove its properties. 

3. Derive the Binomial density function and find mean & variance. 

4. Write short notes on Gaussian distribution and also find its mean and variance. 

5.  Find the variance and Moment generating function of exponential distribution? 

6. Find the mean, variance and Moment generating function of uniform distribution? 

7.  Define Moment Generating Function and state and prove its properties. 

8. Define variance and state and prove its properties. 

9. Define and State the properties of Conditional Distribution and Conditional Density functions. 

10. Explain the moments of the random variable in detail. 

 

Problems: 

 

1.  Let X be a continuous random variable with pdf f (x)=3x,  0<x<1 

                                                                                             0      else find P(X≤0.6)? 

2. a)If X is uniformly distributed is [-2,2], find (i) P(x<0) ii)P(⃓𝑋 − 1⃓) ≥ 
1 

) 
2 

 b)If X is uniformly distributed with E(x)=1 and Var(x)=4/3, find P(X<0) 
c)  ) If X is uniformly distributed over (0,10) calculate the probability that 3<x<8. 

 

3. A random variable X has the following probability density function 

x 0<x<1 
fX(x)  = k(2-x) 1≤x≤2 

0 else 
i) Find the value of k? 

ii) Find P(0.2<x<1.2)? 

iii) Find the distribution function of X. 

 

4. Consider that a fair coin is tossed 3 times, Let X be a random variable, defined as X= number 

of tails appeared, find the expected value of X. 

5. If the probability density of X is given by f(x) = 2(1-x)       0<x<1 
                                                                                       0 else 

Find its rth moment and evaluate E[(2X+1)2] 

 

6. If the random variable X has the following probability distribution  

X:      -2   -1    0       1 

   P(x):  0.4        K    0.2           0.3            Find k and the mean and variance of x. 

 
7. If X is a discrete random variable with a Moment generating function of Mx(v), find the 
Moment generating function of 

i) Y=aX+b ii)Y=KX iii) Y=𝑋+𝑎 
𝑏 
 

8. A random variable X has the distribution function 
12 

FX(x)= ∑ 𝑛2 
𝑢(𝑥 − 𝑛) 

𝑛=1 650 

Find the probability of a) P{-∞ < X ≤ 6.5} b)p{X>4} c) p{6< X ≤ 9}
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UNIT-III 

1. State and prove the density function of sum of two random variables. 

2. State and explain the properties of joint density function. 

3. Define and State the properties of joint cumulative distribution function of two random 

variables X and Y. 

4. Define and state and prove the properties of Joint Characteristic Function of two random 

variables. 

5. Explain jointly Gaussian random variables and also state its properties. 

6. Explain the joint moments of two random variables in detail. 

7. Define covariance and derive its properties. 

8. Explain the statistical independence of random variables with example. 

 

Problems: 

1. The joint density function of two random variables X and Y is 

(𝑥 + 𝑦)2 

𝑓𝑋𝑌(𝑥, 𝑦) = { 
; −1 < 𝑥 < 1 𝑎𝑛𝑑 − 3 < 𝑦 < 3 

40 
0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Find the variances of X and Y. 

2. The joint probability density function of X&Y is fX,Y(x,y)= c(2x+y); 0 ≤ x ≤ 2, 0 ≤ y ≤ 3 

                                                                                    0;         else  

            Then find the value of constant c and also find joint distribution function. 

 
3.  Let Z=X+Y-C, where X and Y are independent random variables with variance σ2

X, 

σ2
Y and C is constant. Find the variance of Z in terms of σ2

X, σ2
Y and C. 

4. If X is a random variable for which E(X) =10 and var(X) =25 , for what possible value of 

‘a’ and ‘b’ does Y=aX-b have exception 0 and variance 1 ? 

 

5.  The joint density function of random variables X and Y is 
 𝑓𝑋,𝑌(𝑥, 𝑦) = 8𝑥𝑦 ,    0 ≤ 𝑥 < 1 , 0 ≤ 𝑦 < 1 

 Find f(y/x) and f(x/y) 
 

6. The input to a binary communication system is a random variable X, takes on one of two 

values 0 and 1, with probabilities ¾ and ¼ respectively. Due to the errors caused by the 

channel noise, the output random variable Y, differs from the Input X occasionally. The 

behavior of the communication system is modeled by the conditional probabilities as  

𝑃 {
(𝑌 = 1)

(𝑋 = 1)
} =

3

4
 𝑎𝑛𝑑 𝑃 {

(𝑌 = 0)

(𝑋 = 0)
} =

7

8
 

                 Find a) the probability for a transmitted message to be received as 0. 

                         b) ) the probability that transmitted message is a 1if the  received is 1. 

7. Let X and Y be the random variables defined as X=Cosθ and Y=Sinθ where θ is a 

uniform random variable over (0, 2𝜋) 

a. Are X and Y Uncorrelated? 

                        b.   Are X and Y Independent? 
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8. Two random variables X and Y have zero mean and variance 𝜎2 = 16 and 𝜎2 = 36 
𝑋 𝑌 

correlation coefficient is 0.5 determine the following 
i) The variance of the sum of X and Y 

ii) The variance of the difference of X and Y 
 

9. Two random variables X and Y have the joint pdf is 

fx,y(x,y)= Ae-(2x+y) x,y≥0 

0 elsewhere 
 

i. Evaluate A ii. Find the marginal pdf’s 

iii. Find the marginal pdf’s 

iv. Find the joint cdf 

v. Find the distribution functions and conditional cdf’s. 
 

10. a)Given is the joint distribution of X and Y 
 

  X 

 0 1 2 

 

Y 

0 0.02 0.08 0.10 

1 0.05 0.20 0.25 

2 0.03 0.12 0.15 

 

Obtain (i) Marginal Distributions and (ii) The Conditional Distribution of X given Y=0. 

b) If X and Y are uncorrelated random variables with variances 16 and 9. Find the Correlation co-

efficient between X+Y and X-Y.
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UNIT-IV 
 

1.  Define Stationary random Process and explain various levels of stationary random processes. 

2. State and prove the properties of auto correlation function. 

3. Briefly explain the distribution and density functions in the context of stationary and 

independent random processes. 

4. Differentiate random variable and random process with example. 

5. State and prove the properties of cross correlation function. 

6. Explain types of random process in detail. 

7.  Define covariance of the random process and derive its properties. 

8. Find mean square value and auto correlation function of response of LTI system. 

9. Explain Ergodic random processes in detail. 

10. If the input to the LTI system is the WSS random process then show that output is also a 

             WSS random process. 

 

Problems: 

 

1.  A random process is given as X(t) = At, where A is a uniformly distributed random variable on 

(0,2). Find whether X(t) is wide sense stationary or not. 

 

2. X(t) is a stationary random process with a mean of 3 and an auto correlation function of 

RXX(τ) = exp (-0.2 │τ│). Find the second central Moment of the random variable Y=Z-W,  

where ‘Z’ and ‘W’ are the samples of the random process at t=4 sec and t=8 sec respectively. 

 

 

3.  Given the RP X(t) = A cos(w0t) + B sin (w0t) where ω0 is a constant, and A and B are 

uncorrelated Zero mean random variables having different density functions but the same 

variance σ2. Show that X(t) is wide sense stationary. 

 

4. The function of time Z(t) = X1cosω0t- X2sinω0t is a random process. If X1 and X2are 

independent Gaussian random variables, each with zero mean and variance σ2, find E[Z]. E[Z2] 

and var(z). 

 

 

5. Examine whether the random process X(t)= A cos(t+) is a wide sense stationary if A and 

 are constants and  is uniformly distributed random variable in (0,2π)
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6. A random process X(t) defined by X(t)=A cos(t)+B sin (t) , where A and B are independent 

random variables each of which takes a value 2 with Probability 1 / 3 and a value 1 with 

probability 2 / 3. Show that X (t) is wide –sense stationary 

 

7. A random process has sample functions of the form X(t)= A  cos(t+)  where    is constant, 

A is a random variable with mean zero and variance one and  is a random variable  that is 

uniformly distributed between 0 and 2. Assume that the random variables A and  are 

independent. Is X(t) mean ergodic-process? 

 

8. Find the variance of the stationary process {X(t)} whose ACF is given by 
9 

RXX(τ) = 16 + 
1+6𝜏2 
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YY 4 

UNIT-V 

 

1. State and prove  the properties of power spectral density 
2.  Derive the relation between input PSD and output PSD of an LTI system 
3. Derive the relation between PSD and auto correlation function of the random processes. 

4. State and prove  the properties of cross power spectral density 
5. Derive the expression for cross power spectral density between input and output of LTI system. 

6. Write short notes on cross power density spectrum. 
 
Problems: 

 

1. Check the following power spectral density functions are valid or not 
𝑐𝑜𝑠8(𝜔) 

𝑖) 
2 + 𝜔4 

𝑖𝑖) 𝑒−(𝜔−1)2

  

2. A stationery random process X(t) has spectral density SXX(ω)=25/ (𝜔2+25) and an 
independent stationary process Y(t) has the spectral density SYY(ω)= 𝜔2/ (𝜔2+25). If X(t) and 
Y(t) are of zero mean, find the: 

a) PSD of Z(t)=X(t) + Y(t) 

b) Cross spectral density of X(t) and Z(t) 

 

3.  The input to an LTI system with impulse response h(t)= 𝛿(𝑡) + 𝑡2𝑒−𝑎𝑡. U(t) is a WSS 

process with mean of 3. Find the mean of the output of the system. 

 

4.  A random process Y(t) has the power spectral density SYY(ω)= 
9
 

𝜔2+64 

Find i) The average power of the process ii) The Auto correlation function 

5. a) A random process has the power density spectrum S 

the process. 

(ω)= 6𝜔
2

 

1+𝜔 
. Find the average power in 

 

6. Find the cross correlation function corresponding to the cross power spectrum 

SXY(ω)= 
6

 
(9+𝜔2)(3+𝑗𝜔)2 

 

7. Consider a random process X(t)=cos(𝜔𝑡 + 𝜃)where 𝜔 is a real constant and 𝜃is a uniform 

random variable in (0, π/2). Find the average power in the process. 

 

8. X(t) and Y(t) are zero mean and stochastically independent random processes having 

autocorrelation functions RXX(𝜏)= 𝑒−⃓𝜏⃓ and RYY(𝜏)= cos 2𝜋𝜏 respectively. 
a) Find autocorrelation functions of W(t)=X(t)+Y(t) and Z(t)=X(t)-Y(t). 
b) Find cross correlation function between W (t) and Z (t) 

 

9. A random process is defined as Y (t) = X (t)-X (t-a), where X (t) is a WSS process and a > 0 is a 

constant. Find the PSD of Y (t) in terms of the corresponding quantities of X (t) 
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